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Decrement in processing speed (PS) is a primary cognitive morbidity in clinical populations and could significantly
influence other cognitive functions, such as attention and memory. Verifying the usefulness of connectome-based
models for predicting neurocognitive abilities has significant translational implications on clinical and aging re-
search. In this study, we verified that resting-state functional connectivity could be used to predict PS in 99 older
adults by using connectome-based predictive modeling (CPM). We identified two distinct connectome patterns
across the whole brain: the fast-PS and slow-PS networks. Relative to the slow-PS network, the fast-PS network
showed more within-network connectivity in the motor and visual networks and less between-network connec-
tivity in the motor-visual, motor-subcortical/cerebellum and motor-frontoparietal networks. We further verified
that the connectivity patterns for prediction of PS were also useful for predicting attention and memory in the
same sample. To test the generalizability and specificity of the connectome-based predictive models, we applied
these two connectome models to an independent sample of three age groups (101 younger adults, 103 middle-
aged adults and 91 older adults) and confirmed these models could specifically be generalized to predict PS of
the older adults, but not the younger and middle-aged adults. Taking all the findings together, the identified
connectome-based predictive models are strong for predicting PS in older adults. The application of CPM to pre-
dict neurocognitive abilities can complement conventional neurocognitive assessments, bring significant clinical
benefits to patient management and aid the clinical diagnoses, prognoses and management of people undergoing
the aging process.

1. Introduction (Bishop et al., 2010), so characterizing the different levels of PS ability

in older adults may aid the clinical diagnoses, prognoses and manage-

Processing speed (PS), defined as how fast a person can perform
a mental task (Salthouse, 2000), is one of the strongest predictors of
neurocognitive status, especially in older adults (Deary et al., 2010;
Salthouse and Ferrer-Caja, 2003). Its changes underpin much of the age-
related decline in higher-order cognitive abilities (Finkel et al., 2009;
Luo and Craik, 2008; Salthouse, 2010; Silva et al., 2018). Hence, a
decrement in processing speed is a primary cognitive morbidity in clin-
ical populations (Dow et al., 2004) and could significantly influence
other cognitive functions, such as attention (Silva et al., 2018) and mem-
ory (Hedden et al., 2005; Levitt et al., 2006; Zaremba et al., 2019), in
an aging population. Such deterioration in the cognitive functions has
been suggested to be one of the greatest health threats of older adults
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ment of people undergoing the aging process. Conventionally, in clini-
cal settings, PS is revealed in psychometric pencil-and-paper tests (e.g.,
Symbol Digit Modalities Test (SDMT): Smith, 1982; Digit-Symbol Sub-
stitution: McLeod et al., 1982). With the advancement of neuroimaging
knowledge and methodology, brain predictive models could aid to char-
acterize the cognitive abilities of those patients who may have difficul-
ties in completing neuropsychological tasks. Yet, existing literature has
primarily focused on exploring the correlational relationship between
brain imaging features and PS (Eckert, 2011; Silva et al., 2019); studies
on the feasibility of applying imaging data to build models for predicting
PS in older adults have been scarce.
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In constructing a neural model for PS, task-specificity and repro-
ducibility were two major barriers for the establishment of a neural
model for cognitive constructs. To overcome these barriers, a large
amount of literature has successfully demonstrated that task-free fMRI
could identify age-related (Hohenfeld et al., 2018; Pievani et al., 2014)
and cognitive-ability neuromarkers in older adults, such as memory
performance (Meskaldji et al., 2016; Sakaki et al., 2013), attention
control ability (Fountain-Zaragoza et al., 2019) and cognitive scores
(Buckley et al., 2017; Lin et al., 2018). Therefore, rs-fMRI is capable
of generating valuable information about individual variation in neu-
rocognitive functioning. Although some argued that the resting state is
more neutral compared to the task state, rs-fMRI has been verified to
serve as a baseline brain state and could be used to predict subsequent
task performance (Carter et al., 2010; Sakaki et al., 2013; Siegel et al.,
2016) and to predict training effects on cognitive functions after the in-
tervention (Arnemann et al., 2015). A number of review studies have
highlighted the advantages of rs-fMRI over task-fMRI: 1) rs-fMRI data
are easier to collect without the requirement of specific experimental de-
sign, thus boosting data sharing across studies and sites; 2) rs-fMRI could
eliminate potential confounds that are related to task performance fluc-
tuation and variability; 3) rs-fMRI shows high test-retest reproducibil-
ity and reliability in detecting specific process in brain functions in the
absence of an explicit task (e.g., default-mode network) (Fox and Gre-
icius, 2010; Lee et al., 2013; Panchuelo et al., 2014; Van Den Heuvel and
Pol, 2010; Van Dijk et al., 2010). Besides, the rs-fMRI predictive models
generated from one population could be used to predict the same cogni-
tive ability in other populations while using different tasks (Fong et al.,
2019) or tests (Rosenberg et al., 2016). These findings indicated that the
predictive model generated from the brain state could be generalized to
different populations. Also, the model could capture the features of a
cognitive construct independent of the instrument used for operational-
izing the measure.

There has been a growing interest in identifying individual neurocog-
nitive differences by using whole-brain functional connectivity or the
“connectome” approach to characterize unique patterns of brain orga-
nization for each neurocognitive function (Finn et al., 2015; Liu et al.,
2018; Rosenberg et al., 2016). The application of the machine learn-
ing method further catalyzes the momentum of research to verify the
feasibility and usefulness of rs-fMRI data in building models that can
validly predict neurocognitive functions. A connectome-based predic-
tive modeling (CPM) approach has been introduced to predict behav-
ior using functional connectivity in the machine-learning framework
(Shen et al., 2017). So far, CPM has been demonstrated to predict fluid
intelligence (Finn et al., 2015), attention (Rosenberg et al., 2016, 2020;
Wu et al., 2020), reading ability (Jangraw et al., 2018), cognitive im-
pairment score (Lin et al., 2018), personality traits (Hsu et al., 2018)
and loneliness (Feng et al., 2019).

In this study, we employed the rs-fMRI to establish a predictive
model for PS for older adults. We applied the CPM approach and
used whole-brain resting-state functional connectivity to predict older
adults’ PSs measured by the SDMT (Forn et al., 2009; Gawryluk et al.,
2014). A previous rs-fMRI study revealed that a faster PS was associ-
ated with stronger functional connectivity between the left primary mo-
tor cortex and the right precentral and postcentral gyrus (Koenig et al.,
2014), suggesting that connectivity strength within the motor network
was positively correlated with PS performance. Furthermore, structural
MRI studies found converging evidence that PS depends on processes
subserved by the frontal regions and cerebellum (Bohr et al., 2007;
Eckert et al., 2010; Kennedy and Raz, 2009). Task-related (Forn et al.,
2009; Gawryluk et al., 2014; for review, see Silva et al., 2018) and task-
demand-related activations (Forn et al., 2013) have been reported in
the frontal, parietal, occipital and temporal lobes and the cerebellum.
Based on these previous findings, we first hypothesized that PS could
be predicted by resting-state functional connectivity in older adults.
Second, we examined the characteristics of the predictive connectomes
and hypothesized that it would involve the neural correlates across the
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whole brain (as reported in Forn et al., 2013). Third, we established
the domain specificity of the model by verifying how well the model
could also be applied in the same sample to predict other cognitive do-
mains—neurocognitive abilities that are highly correlated with PS (at-
tention: Silva et al., 2018; memory: Hedden et al., 2005; Levitt et al.,
2006; Zaremba et al., 2019). Fourth, we verified the external generaliz-
ability of the model in the older participants in the Cam-CAN data set
(Shafto et al., 2014; Taylor et al., 2017). Last but not least, we exam-
ined the specificity of the model by testing the model in other age groups
(e.g., younger adults and middle-aged adults). The development of PS
ability through the lifespan is not linear (Lee et al., 2012), and there
are systematic, but not unidirectional, differences in segregation and
integration across different brain regions between older and younger
adults (Chong et al., 2019; Zonneveld et al., 2019). Therefore, we pre-
dicted that the model built from older adults would not be applicable to
younger adults.

2. Methods
2.1. Internal validation participants

In this study, we recruited 125 right-handed older adults with no
past or current neurological diseases or psychological illnesses from the
local community through advertisements in public places. Participants
were excluded based on the following criteria: (1) excessive head mo-
tion, as described in Section 2.4 (21 participants); (2) high score in the
geriatric depression scale test (score > 8, 1 participant); (3) incomplete
resting-state scanning (1 participant); and (4) incomplete cerebellum
coverage of brain scanning (3 participants, see Section 2.5). Finally,
99 participants (74 females and 25 males; mean age = 66.84 years,
SD = 4.59 years) remained in the prediction analysis. All participants
scored above 19 in the Hong Kong version of the Montreal cognitive as-
sessment (MoCA), indicating an absence of dementia based on the cut-
off of the older Chinese adults in Hong Kong (Yeung et al., 2014). Ex-
cept for the one participant who scored 20, all other participants scored
equal or above 22 in MoCA, indicating that most of our participants
were cognitively intact. A portion of these participants were included in
a previous study (Yu et al., 2020). Written consent was obtained from
all the participants prior to the study. This study was approved by the
Research Ethics Committee of the University of Hong Kong.

2.2. Neurocognitive assessments

2.2.1. Processing speed

To evaluate PS, we administered the Chinese version of the SDMT
(Lee et al., 2002; Smith, 1982). Participants were required to match
numbers from 1 to 9 to each geometric symbol by reading aloud the
number as quickly as they could in 90 s. The number of the correct
matched items was recorded and was used to reflect PS ability.

2.2.2. Selective and divided attention

To evaluate selective attention ability, we administered the Arrow
test (Lee et al., 2005). Participants were presented with arrows pointing
either in the “up” or “down” direction in two conditions. In the “go” con-
dition, participants were asked to identify the correct direction of the
arrowheads; while in the “reverse” condition, they were asked to iden-
tify the opposite direction of the arrowheads. Each condition had four
blocks with a total number of 18 trials in each block. The interference
score was calculated by subtracting the reaction time (RT) in the “go”
condition from the RT in the “reverse” condition, and was multiplied by
-1, with a higher score indicating better selective attention. The internal
consistency reliability (Cronbach’s «) of the Arrow test was 0.70.

To evaluate the divided attention, we administered the Color Trails
Test (CTT) with two subtests: CTT 1 and CTT 2 (Lee and Chan, 2000).
In CTT 1, participants were required to connect numbers from 1 to 15
in ascending order. The even numbers were printed on yellow circles,
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while the odd numbers were printed on pink circles. In CTT 2, there
were two sets of numbers (1-15), with one set printed on pink circles
and the other printed on yellow circles. Participants were asked to link
the numbers in ascending order and alternate between pink and yellow
circles. The RTs of completing the two subtests were recorded. The di-
vided attention was assessed by subtracting the RT in CCT 1 from the RT
in CCT 2 and was multiplied by -1, with a higher score indicating better
divided attention. The internal consistency reliability (Cronbach’s «) of
the CTT was 0.77.

2.2.3. Verbal and nonverbal memory

To evaluate verbal and nonverbal memory, the Chinese Auditory
Verbal Learning Test (CAVLT; Lee et al., 2002) and the Continuous Vi-
sual Memory Test (CVMT; Trahan and Larrabee, 1988) were used in the
assessment. In the CAVLT, participants were presented with a list of 15
words for five trials, followed by a free-recall test of the list in each trial.
The participant’s verbal memory ability (total learning) was calculated
by summing the number of the successfully recalled words in the five tri-
als. In the CVMT, participants were shown 112 drawings in seven blocks.
From the second block on, there were seven “old” and nine “new” stim-
uli in each block (42 “old” and 54 “new” in total) that participants were
asked to recognize. Nonverbal memory ability (recognition) was calcu-
lated by subtracting the incorrect recognition score (false alarm) from
the correct recognition score (hit).

The relationship between all the behavioral variables were assessed
using the partial Pearson correlation analysis, controlling for sex, age
and education. A partial Spearman correlation analysis was conducted
if one of the variables did not follow a normal distribution (Kolmogorov-
Smirnov Test, p < 0.05). The relationship between PS and age and edu-
cation was explored using a bivariate Spearman correlation analysis.

2.3. Image acquisition and preprocessing

We obtained the imaging data using a 3T Philips MRI scanner at
the University of Hong Kong. The resting-state fMRI data were ac-
quired using a single-shot gradient-echo multislice echo-planar imag-
ing (EPI) pulse sequence (slice number = 32; slice thickness = 4 mm
without inter-slice gap; TR = 2000 ms; TE = 30 ms; flip angle = 90°;
matrix size = 64 x 64, FOV = 230 x 230 x 128 mm?3); 240 vol were
acquired in about 8 min. The structural MRI data were acquired us-
ing the T1-weighted MPRAGE sequence (137 sagittal slices; slice thick-
ness = 1.2 mm; TR = 6.64 ms; TE = 3.1 ms; flip angle = 9°; matrix
size = 256 x 256, FOV = 256 x 256 x 164 mm?3). The resting-state fMRI
data have never been used in any previous publication.

All  the images were preprocessed using SPM 12
(https://www.fil.ion.ucl.ac.uk/spm/) and DPABI 3.1 (Yan et al.,
2016). For the resting-state fMRI data, the first five volumes were
discarded. Images were then corrected for slice-timing and head mo-
tion. Nuisance regressors, including mean signals from white matter,
cerebral-spinal fluid signals and global signals, as well as the Friston
24-motion parameters (six motion parameters, six motion derivatives
and their squares), were regressed out from the data. As suggested by
Power et al. (2012), volume with a mean frame-wise displacement
(FD) > 0.5 mm was added as a covariate, and the one volume prior to
this volume and the two volumes after this volume were also added
as covariates. The number of volumes with FD > 0.5 mm ranged from
0 to 62, and the mean was 5.76 (the percentage of volumes with FD
> 0.5 mm ranged from O to 26.4%, and the mean was 2.45%). The
images were then spatially smoothed by a Gaussian kernel of 6 mm
full-width-at-half-maximum (FWHM) and temporally smoothed using
the frequency bandwidth of 0.01-0.1 Hz.

2.4. Head motion controls

Considering the head motion effect on the resting-state functional
connectivity, participants were excluded with absolute head motion
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> 2 mm translation and > 2° rotation or mean FD > 0.2 mm
(Jenkinson et al., 2002; Yan et al., 2013). To verify that the behavioral
scores (i.e., PS, divided and selective attention, verbal and nonverbal
memory) and predicted scores were not correlated with head motion,
we also tested the correlation coefficients between the mean FD and the
observed behavioral and predicted scores. To further control for possi-
ble head motion confounds, we also ran the identical prediction analysis
with the mean FD as an additional covariate. In addition, we evaluated
whether the predictive models would also be associated with the mean
FD, utilizing the method in Section 2.8.

2.5. Functional connectivity network construction

Network nodes were defined using the Shen 268-node functional
brain atlas that encompasses the cortex, subcortical areas and cerebel-
lum (Shen et al., 2017). First, the functional images were normalized
to the structural images, generating a deformation and an inverse de-
formation matrix. Following that, we warped the 268-node atlas from
MNI space into individual functional space using the inverse deforma-
tion matrix. To ensure good quality of registration, the warped atlases
were visually checked using SPM, and participants with poor registra-
tion were excluded (see above), resulting in 99 participant-specific at-
lases. We then extracted the mean time series of each node by averaging
the time series of all the voxels in each node in the participant-specific
atlases. The functional connectivity (edge) was calculated as the Pear-
son correlation coefficient () between the mean time series of each pair
of nodes. A Fisher’s r-to-z transformation was then used to normalize
the correlation coefficients, and the resulting 268 x 268 matrix for each
participant was utilized in the following CPM analysis.

2.6. Predictive model construction

2.6.1. Leave-one-out cross-validation

To evaluate whether the resting-state functional connectivity could
be used to predict the PS in novel older adults, we applied the
CPM method using a leave-one-out cross-validation (LOOCV) method
(Finn et al., 2015; Rosenberg et al., 2016; Shen et al., 2017) and
performed the analyses in MATLAB (R2017b, MathWorks). First, for
each set of n — 1 participants, behavioral variables were normalized
within the training set. Subsequently, the Spearman’s partial correla-
tion coefficients were calculated between the edges and the observed
behavior score, controlling for sex, age and education. As suggested by
Shen et al. (2017), we used the Spearman’s rank correlation rather than
the Pearson’s correlation because the observed behavior scores in our
sample did not follow a normal distribution assessed by the Kolmogorov-
Smirnov Test (p < 0.05). Besides, because there were unequal numbers
of females and males in our sample and the PS was significantly associ-
ated with age and education, we controlled for sex, age and education
to select edges that were correlated with PS independent of other possi-
ble confounds. We obtained a p value and a p value for each edge. Next,
we extracted a positive network and a negative network, respectively,
by selecting edges that were positively correlated and negatively corre-
lated with the behavior score, using a threshold of p < 0.01, which was
adopted in previous studies (Lin et al., 2018; Rosenberg et al., 2016).
We then summed the edge values in the positive and negative networks,
respectively, to characterize the network strength for each participant.

Next, the network strength indices extracted from the positive and
negative networks were fitted into three general linear models to gen-
erate three coefficients and three intercepts. The first one (positive net-
work model) predicted PS with positive network scores, the second (neg-
ative network model) with negative network scores, and the third (com-
bined network model) with the difference of the positive and negative
network scores as one independent variable (positive score minus neg-
ative score; Greene et al., 2018; Rosenberg et al., 2020). The positive
and negative functional connectivity indices of the left-out participant
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were then fitted into these three linear models to generate three pre-
dicted scores for the left-out participants. The Spearman’s correlation
coefficients between the observed and predicted scores were calculated,
defined as the true predictive correlation p,,.. To assess the significance
of the predictive connectome-based models, we adopted a permutation
testing method, as the analyses in the LOOCV were not independent and
the number of degrees of freedom were overestimated (Rosenberg et al.,
2016). By randomly shuffling the observed behavior score, we ran the
LOOCV procedure identical to the CPM analysis described above (run
5000 times). The pperm, value was calculated as the percentage of p
values generated from the null-distributed samples that were larger or
equal to the true predictive correlation p.,.. Model performance was
calculated using the fraction of explained variance (R?, in percentage)
between the predicted values and the observed values (Poldrack et al.,
2019), where RZ=1-— % (SSE is the sum of squared error; SST is
the sum of squared total). A negative correlation between the predicted
value and actual behavior score (negative p value) was considered as an
unsuccessful prediction and was assumed to explain none of the vari-
ance, where R? was set to zero.

2.6.2. Validation analysis using repeated k-fold cross-validation

To further validate our main results, we adopted repeated k-fold (i.e.,
2-fold, 5-fold, and 10-fold) cross-validation methods (also called shuf-
fle split). Taking the 2-fold cross-validation as an example, we randomly
divided the participants into two subsets with approximately equal num-
bers (i.e., 50 and 49), with one being the training set and the other being
the testing set. All the behavioral variables were normalized in the train-
ing and testing set separately. The training set was used to build a linear
prediction model, and the model’s parameters were further applied to
predict the behavior scores of the testing set. The Spearman correlation
coefficients p and explained variance R? were calculated for the positive,
negative and combined network models. This procedure was repeated
twice, with each subset being used as the testing set once. The two ps
and R? values were averaged to obtain the prediction performance. The
k-fold cross-validation was further repeated 100 times, and the final
prediction performance was generated from averaging all the p and R?
values. The model’s significance was tested using 5000 permutations.

2.7. Functional anatony

We defined a “fast-PS network” containing edges that appeared in
every iteration of the LOOCYV in the positive network. In the same vein,
a “slow-PS network” was defined that comprised edges that appeared
in the negative network. To identify the functional anatomy of the fast-
and slow-PS networks, we defined the brain nodes as different networks
in two ways. The Shen 268-node functional brain atlas was classified
into 10 anatomical macroscale regions (e.g., prefrontal, motor, insula;
Shen et al., 2013) and eight canonical functional networks (e.g., medial
frontal, frontoparietal, default mode; Finn et al., 2015). We explored
the characteristics of the within- and between-network connectivity by
summing the common edges using the eight functional networks in the
fast- and slow-PS networks. Following this, we compared the connectiv-
ity patterns by subtracting the number of edges in the slow-PS network
from the fast-PS network. Considering the eight functional networks had
different numbers of nodes, we calculated and compared the proportion
of the within- and between-network connectivity to control for the net-
work size. We first summed the actual connectivity within or between
the network(s) from the fast- and slow-PS network and then calculated
the proportion of that connectivity (s = actual number of connectivity
/ total number of all possible connectivity within or between the net-
work).

2.8. Procedures for testing the PS-CPM models

We then examined the domain specificity, the external validity and
the effect of confounds of the processing speed CPM (PS-CPM) mod-
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els, as described in the following sessions. The common procedures for
these analyses are described below. Two network strength scores were
calculated by summing the edges selected from the fast-PS network and
slow-PS network. Subsequently, the fast-PS network strength, slow-PS
network strength, and combination of the two network strengths (fast-
PS network strength minus slow-PS network strength) were fitted into
three linear models separately (fast-PS network model, slow-PS net-
work model, combined network model). The estimated model param-
eters from the above three linear models were applied to the other de-
pendent variables of our primary data set and the external data set re-
spectively. For testing the PS-CPM model on the external data sets, the
network strengths were calculated with the same procedure, and eval-
uated against the corresponding dependent variables. A Spearman cor-
relation analysis was then conducted between the predicted scores and
the observed behavioral scores, as some of the variables did not follow a
normal distribution (Kolmogorov-Smirnov Test, p < 0.05). An R? value
was also computed to evaluate the prediction performance. Permutation
testing (5000 times) was adopted to test the significance of the predic-
tion.

2.9. Domain specificity of the PS-CPM models

In order to investigate the domain specificity of the PS-CPM models,
we tested if the models also predicted attention and memory perfor-
mance, using the method in Section 2.8. We generated three predicted
scores. To explore whether the prediction was driven by the correlation
between PS and attention/memory, we also tested the partial Spearman
correlation between the predicted scores and the observed scores, while
controlling for PS. To further explore the effect of attention and memory
on our PS-CPM models, we additionally controlled attention and mem-
ory in the edge selection and tested whether it would affect the pre-
diction performance of PS-CPM models on PS. To explore whether the
PS-CPM models could predict cognitive function that was not associated
with PS, we also tested the predictive value of the models on the total
move scores of Tower of London (ToL) (for details, see Supplementary
Materials). The total number of move in the ToL task was found not to be
correlated with PS, and it mainly assesses planning process (Riccio et al.,
2004). The false discovery rate (FDR) procedure was further applied to
the number of comparisons. Statistical significance was considered to be
p < 0.05, two-tailed. To investigate the specificity of the PS-CPM mod-
els, we also used Hotelling-Williams t-test (Steiger, 1980) to test whether
the correlations between the network strengths (fast-PS and slow-PS net-
works) and PS were significantly different from the correlation between
the network strengths and (1) attention and (2) memory.

2.10. External validation: Cam-CAN data set

2.10.1. Participants

We used an open data set of participants from Stage 2 of the
Cambridge center for Ageing and Neuroscience (Cam-CAN) project
(available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/; details
about this project can be found in previous work (Shafto et al., 2014;
Taylor et al., 2017). A list of publications using this data set could be
found at: https://www.cam-can.org/index.php?content=publications.
Participants in the external validation were selected from a total of 708
participants with demographic information (e.g., age, sex, education)
available. Participants were included according to the following crite-
ria: (1) right-handed (73 participants excluded); (2) with all MRI modal-
ity data available (e.g., resting-state fMRI, structural MRI; 60 partici-
pants excluded); (3) head motion < 2 mm translation and < 2° rotation,
mean frame-wise displacement (FD) < 0.2 mm (Jenkinson et al., 2002;
Yan et al., 2013; 203 participants excluded); (4) Good registration qual-
ity (16 participants excluded); (5) complete brain scanning (with no
missing brain nodes; 25 participants excluded); and (6) with a behavior
score of the processing speed task (choice response time task, see Sec-
tion 2.9.2) available and an accuracy > 75% (36 participants excluded).
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Finally, we included 295 participants with the Mini-mental State Exami-
nation (MMSE; Folstein et al., 1975) scores above 24 in the external vali-
dation analyses. The participants were further divided into three groups:
101 younger adults (50 females and 51 males; mean age = 30.65 years,
SD = 5.12 years), 103 middle-aged adults (53 females and 50 males;
mean age = 48.65 years, SD = 5.71 years) and 91 older adults (44 fe-
males and 47 males; mean age = 72.09 years, SD = 7.63 years).

2.10.2. Processing speed measurement

The choice response time task (CRT) was used to assess the PS in
the new sample. The CRT required participants to make appropriate
responses based on the presented stimuli. It has been suggested that the
CRT and SDMT measure a similar construct, and the performance of
these two tests are associated (Deary et al., 2011; Iverson et al., 2005).
In the CRT, participants were presented with an image of a hand with
four blank circles above each finger and were asked to place their right
hands on a response box with four fingers on four separate buttons. In
each trial, one of the four blank circles above the hand would turn black,
and participants had to press the button using the corresponding finger
as quickly as possible (maximum 3-second response time). The inter-
trial intervals (ITI) varied pseudo-randomly with a positively skewed
distribution and a mean of 3.7 s, from a minimum of 1.8 to a maximum
of 6.8 s. There were 67 trials in total. The mean reaction times (RT) from
the stimulus onset to pressing the button were recorded and reflected the
PSs of the participants. The RT was multiplied by —1 and z-transformed
before being entered into the following analysis, with a higher score
representing faster PS. The internal consistency reliability (Cronbach’s
a) of the CRT was 0.97.

2.10.3. Image parameters and preprocessing

The MRI data were collected at the Medical Research Council Cog-
nition and Brain Science Unit (MRC-CBSU) on a 3T Siemens TIM Trio
System, with a 32-channel head coil. The resting-state fMRI data were
acquired using a gradient- echo-planar imaging (EPI) sequence (slice
number = 32 in descending order; slice thickness = 3.7 mm with an
interslice gap of 20%; TR = 1970 ms; TE = 30 ms; flip angle = 78°
matrix size = 64 x 64, FOV = 192 x 192 x 142 mm?3); 261 vol were ac-
quired in about 8 min and 40 s. The structural MRI data were acquired
using a T1-weighted MPRAGE sequence (192 sagittal slices; slice thick-
ness = 1.2 mm; TR = 2250 ms; TE = 2.99 ms; flip angle = 9°; matrix
size = 256 x 240, FOV = 256 x 240 x 192 mm3).

All the images were preprocessed as described in Section 2.3. The
number of volumes with FD > 0.5 mm ranged from O to 63, and the
mean was 9.92 (the percentage of volumes with FD > 0.5 mm ranged
from 0 to 24.6%, and the mean was 3.9%). Participants were excluded
with absolute head motion > 2 mm translation and > 2° rotation or mean
FD > 0.2 mm. The performance (mean RT) of CRT was not significantly
correlated with mean FD (younger adults: p = 0.045; p = 0.66; middle-
aged adults: p = 0.028; p = 0.78; older adults: p = 0.13; p = 0.23),
suggesting that head motion was not a significant potential confound of
our validation results.

2.10.4. Functional connectivity network construction
All procedures of constructing resting-state networks were the same
as those described in Section 2.5.

2.10.5. CPM prediction

To verify if the identified PS-CPM models could be generalized to the
older adults, we applied the approach in Section 2.8. We fitted the net-
work strengths of the Cam-CAN data set to the three linear models (fast-
PS network model, slow-PS network model, combined network model)
and generated three predicted scores for PS. To control for the head mo-
tion effect, we also calculated the partial Spearman correlation coeffi-
cients between the predicted scores and CRT scores by adding the mean
FD as a covariate. The Spearman correlation test was used because the
CRT scores did not follow a normal distribution (Kolmogorov-Smirnov
test, p < 0.05).
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2.10.6. PS-CPM validated in other age groups in the Cam-CAN data set

To investigate the specificity of the PS-CPM models, we repeated
our external validation analyses in the younger-aged group and in the
middle-aged group, using the Cam-CAN data set. The other analyses
were identical to those in the aged group for the younger and middle-
aged groups.

2.11. Supplementary analyses

Four supplementary analyses were conducted to evaluate the influ-
ence of potential confounds on our results. For clarity, the primary CPM
model described in Section 2.6.1 is labelled as C1 (stands for CPM model
1). In the analysis of C1, C2, C4 and C5, partial correlation was applied in
the edge selection loops, and the corresponding variables were entered
into the partial correlation function as nuisance variables. We examined
the effect of head motion in model C2 by entering mean FD, age, sex and
education as nuisance covariates (also described in Section 2.4). As PS
was highly correlated with age, how and whether to control age could
potentially influence the CPM results. Thus, we also used different co-
variate controlling methods. In C3, we controlled for nuisance variables
by regressing out the age, sex and education from both behavioral and
connectivity measures of the training set in each loop and utilized sim-
ple correlation in the edge selection. In C4, we controlled only for sex
and education to explore the effect of age on the PS-CPM model.

Lastly, we also explored the effect of the p threshold selection in the
edge selection in model C5. Instead of a predefined p-value, we tested a
range of p values from 0.001 to 0.1 with an interval of 0.001 (Gao et al.,
2019; Jiang et al., 2018). Optimal p thresholds that led to the best pre-
diction performance were obtained for the positive network (p = 0.093)
and negative network (p = 0.013) separately (C5; for details, see Sup-
plementary Materials). In the supplementary analyses (C2-C5), different
CPM models were constructed and generalized to the younger, middle-
aged, and older adults in the Cam-CAN data set. To further investigate
whether the predictions of different supplementary analyses were sig-
nificantly different from those of C1, we applied the Hotelling-Williams
t-test (Steiger, 1980) and compared the significant correlation coeffi-
cients in the internal and external validations.

3. Results
3.1. Connectivity—behavior prediction

The demographic information of the 99 participants is shown in
Table 1. The connectome-based predictive models significantly pre-
dicted the PS scores of the novel participants (left-out participant in
the LOOCV) using resting-state functional connectivity (positive net-
work: p = 0.36, RZ = 8.58%, Ppermu = 0.010; negative network: p = 0.42,
R? =11.20%, Ppermy = 0.003; combined network: p = 0.40, R? = 10.49%,
Ppermu = 0.001; Fig. 1A). Furthermore, the models remained significant
(OSpermu < 0.05) after applying different k-fold cross-validation schemes
(Table 2). For the positive network, the number of edges extracted from
each iteration ranged from 496 to 654, and the fast-PS network con-
tained 331 common edges (0.93% of the 35,778 total edges) occurring
in every iteration. For the negative network, the number of edges ex-
tracted from each iteration ranged from 527 to 708, and the slow-PS
network contained 380 common edges (1.06% of the total edges). The
fast-PS and slow-PS networks are separately shown in Fig. 2.

3.2. Functional network anatomy

We identified connectivity patterns within and between the eight
networks in the fast-PS network and the slow-PS network, after taking
the eight functional network sizes into consideration and obtaining the
proportion of each network (Fig. 3). Our results showed that, in the
fast-PS network, connectivity within the motor network contributed the



Table 1

Demographic information of the participants used in this study and correlations between the studied variables, controlling for sex, age and education. The correlation analyses
were conducted on the z-transformed values of the variables.

Correlation coefficients (r or p)

Variables Mean SD Processing speed ~ Selective attention =~ Divided attention =~ Verbal memory  Nonverbal memory  Fast-PS Slow-PS
Our sample: N = 99

1. Sex (Female/male) 74/25

2. Age (years old) 66.84 4.59 —0.55%**2 -172 —0.29+*2 —0.39%**2a -.19?

3. Education (years) 12.02 4.65 35%xxa 172 182 A1ra -.0022

4. Processing speed! (n) 53.74 10.47 —

5. Selective attention (ms) -12.54 5.89 21 —

6. Divided attention (ms) -52.26 24.95 23** 31 —

7. Verbal memory (n) 47 9.45 35%xx .08 .002P —

8. Nonverbal memory (n) 71 7.15 32+ 17 .10 17° —

9. Fast-PS network strength 39.41 32.06 740 23*¢ 33%xcC 31#%¢ 32%x¢ —

10. Slow-PS network strength ~ -28.74 37.71 —0.69*** —0.24%¢ —0.29%*¢ —0.30%*¢ —0.34%*¢ -0.92%**  —

Cam-CAN sample: N = 91

1. Sex (Female/male) 44/47

2. Age (years old) 72.09 7.63 —0.34**2
3. Education (years) 19.45 4.16 -.162

4. Processing speed? (ms) -692.60 145.03 —

Note: Fast-PS and slow-PS network strengths are extracted from the PS-CPM models that appeared in every internal validation loop. The correlations between the network
strengths and PS only indicate the relationship between PS-CPM networks and PS, while the prediction results (p, R? and Ppermu) Of the PS-CPM models are shown in Fig. 1A.
N, number of participants; M, mean; SD, standard deviation; Processing speed!: Symbol Digit Modalities Test; Processing speed?: Choice Response Task; Selective attention:
Arrow test; Divided attention: Color Trail Test; Verbal memory: Chinese Auditory Verbal Learning Test; Nonverbal memory: Continuous Visual Memory Test. Unless otherwise
specified, the correlation coefficients were acquired using Partial Spearman correlation analysis. ?: bivariate Spearman correlation coefficients.

b Partial Pearson’s correlation coefficients.

¢ : p-values are obtained based on FDR corrections; * p < 0.05, ** p < 0.01, *** p < 0.001.
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A PS-CPM internal validation prediction
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B PS-CPM External validation prediction in Cam-CAN older adults
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Fig. 1. Resting-state functional connectivity predicts processing speed (SDMT score) of older adults in the internal validation data set (A) and predicts processing
speed (CRT score) of older adults in the external validation data set (B). Behavioral scores were standardized for visualization. PS: processing speed; SDMT: Symbol
Digit Modalities Test; CRT: Choice Response Task. pj.,: p-value obtained from permutation tests (5000 times).

Table 2
K-fold cross-validation results of CPM analyses.

Positive network

Negative network

Combined network

k- 14 R? (%) P R? (%) 4 R? (%)

fold mean  SD mean SD Ppermu mean  SD mean SD Prermu mean  SD mean SD Ppermu
2-fold 0.36 005 1034 275 <0.001 038 006 1076 2.80 0.001 0.39 005 1136 266 < 0.001
5-fold 0.36 0.05 1422 277 0.003 0.40 005 1533 293 < 0.001 0.39 004 1519 250 0.0014
10-fold  0.35 0.05 19.09 3.24 0.005 0.40 0.05 21.00 346 0.002 0.38 0.05 20.78 394 0.0016

Note: SD: standard deviation; pp,,,: p values obtained from permutation (5000 times).

Fast-PS network

Insula
Parietal
Temporal

Limbic
Cerebellum
Subcortical

Slow-PS network

Fig. 2. Fast-PS network (left, pink) and slow-PS network
(right, blue) obtained from the PS-CPM models and distributed
in macroscale brain regions. The demonstrated edges are the
common edges that occurred in every iteration of the CPM
construction. There are 331 common edges in the fast-PS net-
work and 380 common edges in the slow-PS network. The
10 macroscale regions include the prefrontal cortex, motor
cortex, insula, parietal cortex, temporal cortex, occipital cor-
tex, limbic (including the cingulate cortex, amygdala and hip-
pocampus), cerebellum, subcortical areas (thalamus and stria-
tum) and brainstem. Connectivity figures were created using
ggraph (CRAN.R-project.org/package=ggraph) . (For interpre-
tation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 3. Fast- and slow-PS networks and their
comparison in canonical functional networks.
Each node represents one functional network.
Larger circles and thicker lines represent a
greater proportion of connections. Each cell
(fast-PS > slow-PS) represents the comparison
of edges within and between each functional
network. The connectivity within and between
each functional network was obtained by ex-
tracting the proportion of that connectivity (ac-
tual number of connectivity / total number of
all possible connectivity within or between the
network(s)), controlling for network size. The
proportions ranged from 3.0% to 13.5% for
the functional networks in the fast-PS network,
and from 2.7% to 12.5% for the functional net-
works in the slow-PS network. PS: processing
speed; MF: medial frontal; FP: frontoparietal;

Fast-PS > Slow-PS

H Bl
-

L
N
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Loa <
S“-E >

SubC
Motor
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DM: default mode; SubC: subcortical and cerebellum; VI: visual I; VII: visual II; VA: visual association.

most, whereas in the slow-PS network, connectivity between the motor-
visual II, motor-SubC and motor-frontoparietal networks contributed the
most. The comparison between the two networks (fast-PS > slow-PS)
showed that the fast-PS network consisted of more within-network con-
nectivity in the motor and visual I networks, while the slow-PS network
consisted of more between-network connectivity in the motor-visual II,
motor-SubC and motor-frontoparietal networks.

These results demonstrated that more within-network connectivity
in the motor and visual network indicated faster PSs, whereas more
between-network connectivity in the motor-visual, motor-SubC and
motor-frontoparietal networks indicated slower PSs.

3.3. Motion control

Head motion, referring to the mean FD, was not significantly as-
sociated with the PS (p = 0.08, p = 0.39), attention (Arrow: p = 0.11,
p=0.27; CTT: p=0.14,p = 0.16) or memory (CAVLT: p = 0.06, p = 0.58;
CVMT: p = —0.03, p = 0.81). Neither the predicted PS score generated
by the positive network (p = —0.06, p = 0.55) nor the negative net-
work (p = 0.07, p = 0.48) was correlated with the mean FD. In ad-
dition, our PS-CPM models did not significantly predict head motion
(fast-PS network: p = 0.01, RZ = 0.02%, Ppermu = 0.47; slow-PS net-
work: p = 0.09, RZ = 1.49%, Ppermu = 0.20; combined network: p = 0.05,
R? = 0.55%, Ppermy = 0.31). Furthermore, the PS-CPM models remained
significant after adding the mean FD as an additional covariate (posi-
tive network: p = 0.36, RZ = 8.66%, Ppermu = 0.009; negative network:
p = 0.42, RZ = 10.94%, Ppermu = 0.002; combined network: p = 0.41,
R? = 10.38%, Ppermu = 0.001). The common edges were highly over-
lapped with the main results after controlling for motion (percentage of
overlapping: fast-PS network: 94.12%; slow-PS network: 95.73%). These
results suggested that head motion did not have significant confounding
effects on our major findings.

3.4. Domain specificity

The associations between each behavioral variable are shown in
Table 1. PS was negatively associated with age. Our behavioral ex-
ploratory analyses confirmed that PS was positively correlated with se-
lective (arrow test) and divided (CTT) attention and verbal (CAVLT) and
nonverbal (CVMT) memory, and was not correlated with planning func-
tion (ToL). Our results showed that the PS-CPM models (fast-PS network,
slow-PS network and combined network) significantly predicted atten-
tion and memory following FDR correction (ps > 0.22, Rs® > 4.26%,
ps < 0.05) (Table 3). However, the predictions were not significant af-
ter controlling for PS (|ps| < 0.19, Rs? < 3.30%, ps > 0.27). These re-
sults suggested that the associations between PS-CPM models and atten-

tion/memory were largely driven by the association between PS and at-
tention/memory in older adults. On the other hand, the PS-CPM models
still significantly predicted PS after controlling for attention and mem-
ory (positive network: p = 0.40, R? = 10.25%, Ppermu = 0.004; nega-
tive network: p = 0.31, R? = 5.98%, Ppermu = 0.031; combined network:
p=0.37, R? = 8.30%, Ppermu = 0.005). Furthermore, Hotelling-Williams
t-tests showed that the correlations between the network strengths and
PS were significantly larger than the correlations between network
strengths and attention/memory measures (attention: |ts| > 3.14, ps <
0.001; memory: |ts| > 2.79, ps < 0.01). Besides, the PS-CPM models did
not significantly predict planning function. The above results might sug-
gest that the common networks derived from the PS-CPM models mainly
captured the construct of PS. In sum, our results showed the PS-CPM
models, which mainly captured the feature of PS, could be used for pre-
dicting selective and divided attention, as well as verbal and nonverbal
memory in the same sample.

3.5. External validation: cam-can data set

The demographic information of the Cam-CAN participants is shown
in Table 1 and Table 4. The internal and external validation samples
(older adults) differed significantly in sex (y? = 14.04, p < 0.001), age
(t = =5.80, p < 0.001) and education (t = —11.57, p < 0.001). The
fast- and slow-PS networks significantly predicted the mean RT of the
CRT in older adults in the Cam-CAN sample (fast-PS network: p = 0.25,
R? =8.13%, p = 0.02; slow-PS network: p = 0.22, R? = 6.74%, p = 0.04;
combined network: p = 0.22, RZ = 7.75%, p = 0.04; Fig. 1B). How-
ever, our PS-CPM models could not be generalized to either the younger
adults (fast-PS network: p = 0.01, R? = 0.14%, p = 0.92; slow-PS net-
work: p = 0.04, RZ = 0.60%, p = 0.66; combined network: p = 0.04,
R? = 0.39%, p = 0.72) or the middle-aged adults (fast-PS network:
p = 0.01, R? = 0.24%, p = 0.93; slow-PS network: p = —0.05, RZ = 0,
p = 0.60; combined network: p = —0.03, R? = 0, p = 0.77), which con-
firmed our a priori hypotheses. These findings remained unchanged after
controlling and adding the mean FD as a covariate, indicating that head
motion did not significantly influence our results. Details of the results
are shown in Table 4. Our results suggested that the PS-CPM models
generated from our own sample could be generalized to predict the PS
ability in older adults but could not be generalized in the younger adults
or middle-aged adults.

To further investigate why the PS-CPM models could not be gen-
eralized to the younger groups, we did several exploratory analyses
(for details, see Supplementary Materials). First, we used resting-state
functional connectivity and tried to build internal validation CPM mod-
els in the younger and middle-aged groups from the Cam-CAN data
set. Results showed that we could not obtain CPM models that signifi-
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Table 3
PS-CPM models predict other cognitive functions.
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Neurocognitive Fast-PS network Slow-PS network Combined network

Assessments P R* (%)  Ppemu  Peor P R* (%)  Ppomu  Peor P R? (%)  Ppemu  Peorr
Selective attention (Arrow) 0.22 6.35 0.010 0.012 0.24 7.98 0.007 0.010 0.25 749 0.006 0.010
Divided attention (CTT) 0.32 7.81 0.001 0.002 031 6.15 0.001 0.003 0.33 7.15 <0.001  0.002
Verbal memory (CAVLT) 0.25 4.26 0.005 0.009 0.30 5.73 0.002 0.003 0.29 5.22 0.003 0.007
Nonverbal memory (CVMT)  0.33 10.19 <0.001 0.001 0.36 12.06 <0.001 0.001 0.35 11.61 <0.001  0.001
Planning function (ToL) 0.03 1.28 0.382 0.382  0.08 2.24 0.219 0.253  0.06 1.83 0.289 0.382
controlling for PS

Selective attention (Arrow) 0.08 1.60 0.220 0.354 0.10 2.80 0.157 0294 0.10 2.33 0.147 0.354
Divided attention (CTT) 0.13 0.76 0.086 0268  0.11 0.30 0.130 0294 0.3 0.51 0.085 0.268
Verbal memory (CAVLT) -0.13  1.29 0.891 0.891 -0.06 0.29 0.730 0843 -0.10 0.69 0.836 0.891
Nonverbal memory (CVMT)  0.14 1.91 0.089 0268  0.19 3.30 0.034 0.268  0.16 2.76 0.063 0.268
Planning function (ToL) 0.02 0.43 0.440 0.550  0.08 1.19 0.236 0.354  0.05 0.84 0314 0.550

Note: PS-CPM: processing speed connectome-based modeling; Arrow: Arrow test; CTT: Color Trail Test; CAVLT: Chinese Auditory Verbal Learning
Test; CVMT: Continuous Visual Memory Test; ToL: Tower of London. Numbers in bold indicate significant correlations after FDR correction (p <

0.05).

Table 4
External validation in the Cam-CAN data set.

Younger adults N = 101

Middle-aged adults N = 103

Older adults N = 91

Mean SD Mean SD Mean SD
Sex 50/51 53/50 44/47
(Female/male)
Age (years old) 30.65 5.12 48.65 5.71 72.09 7.63
Education 21.95 32 20.04 3.16 19.45 4.16
(years)
Processing -474.9 71.6 -548.8 80.3 -692.6 145.03
speed (ms)
Pearson -0.105 -0.217* —0.322*
correlation
(PS and age)
PS-CPM Fast-PS Slow-PS Combined Fast-PS Slow-PS Combined Fast-PS Slow-PS Combined
models
External 0.14% 0.60% 0.39% 0.24% 0.00% 0.00% 8.13%* 6.74%" 7.75%"
validation (R?)
Control for FD  0.14% 0.59% 0.38% 0.22% 0.00% 0.00% 7.90%* 6.58%" 7.55%"

(R%)

Note: p indicated Spearman correlation coefficients; SD: Standard deviation; PS: Processing speed; FD: frame-to-frame displacement head motion; Numbers in bold

indicate significant results (p < 0.05); *: p < 0.05.

cantly predicted the PS of the younger or middle-aged adults. Second,
we tested whether the variance of PS in the younger groups was sig-
nificantly different from the variance in the older adults of the Cam-
CAN data set. Results showed that older adults had significantly higher
CRT variance, compared to the younger and middle-aged adults. Third,
we compared our PS-CPM networks (fast-PS network and slow-PS net-
work) with the SA-CPM (sustained attention-CPM, high-attention net-
work and low-attention network) networks derived from younger adults
in Rosenberg et al. (2016). Results showed that the overlaps between the
fast-PS and high-attention network (percentage of overlapping: 0.18%),
and between the slow-PS and low-attention network (percentage of
overlapping: 0%) were very low.

3.6. Supplementary analyses

The results of the supplementary analyses are shown in Fig. 4 (for
details, see Supplementary Table S1 and S2). In the internal valida-
tion, our results showed that in different supplementary analyses, the
resting-state CPM models still significantly predicted PS (positive net-
work: R? = 8.58 ~ 11.70%; negative network: R? = 5.98 ~ 12.25%;
combined network: R? = 10.38 ~ 12.40%; all DSpermu < 0.05). In the
external validation in the older adults, the PS-CPM models remained
significant to predict the PS (fast-PS network: R? = 8.13 ~ 9.64%; slow-
PS network: RZ = 6.53 ~ 7.66%; combined network: R? =7.75 ~ 9.13%;

all ps < 0.05). For external validation in the younger and middle-aged
adults, all the supplementary analyses showed that the PS-CPM models
could not be generalized to predict the PS in these two groups (fast-PS
network: RZ = 0 ~ 0.29%; slow-PS network: RZ = 0 ~ 0.91%; combined
network: RZ = 0 ~ 0.58%; all ps > 0.05).

Overall, it was observed that the CPM model predictions in the sup-
plementary analyses were not markedly different from those of the ini-
tial model, particularly during external validation, which suggested that
our core findings were robust across different control analyses.

4. Discussion

This study’s findings indicated that, by using the data-driven CPM
method, the resting-state functional connectivity could significantly pre-
dict PS in older adults. The predictive networks incorporated functional
connectivity among the frontal, parietal, temporal and occipital regions
and the cerebellum, which belongs to the motor, frontoparietal, medial
frontal, default-mode, visual-related and SubC networks, respectively.
We further identified two connectome patterns (fast- and slow-PS net-
works) associated with PS at the region and network levels. Specifi-
cally, the fast-PS network consisted of largely within-network connec-
tivity in the motor and visual networks. The slow-PS network, on the
other hand, consisted of largely between-network connectivity in the
motor-SubC and motor-frontoparietal networks. Our findings also con-
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Fig. 4. Prediction performance (explained
variance) of different supplementary analyses
in older adults in the internal (A) and external
(B) validation. C1: main CPM analyses (con-
trolling for age, sex and education in edge se-
lection); C2: effect of head motion (control-
ling for age, sex, education and mean FD in
edge selection); C3: effect of regression meth-
ods of possible confounds (for each set of n-1
participants, regressing out age, sex and edu-
cation from the functional connectivity matrix
and PS score before training the CPM models);
C4: effect of age (controlling for sex and edu-
cation in edge selection); C5: effect of p thresh-
old selection (optimal p thresholds for the pos-
itive network (p = 0.093) and negative net-
; work (p = 0.013) separately). “—*—” indicates

1
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B Prediction performance in external validation (older adults)
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C1 C2 C3 C4 C5 the comparisons between the correlation coef-
ficient of C1 and the correlation coefficients
of other supplementary analyses are signifi-
cant. “—n.s.—” indicates the comparisons be-
tween the correlation coefficient of C1 and the
correlation coefficients of other supplementary
analyses (C2-C5) are not significant. “*” indi-
cates p < 0.05.
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firmed our a priori expectation that the PS-CPM models could also pre-
dict attention and memory in the internal validation sample. Models
identified from our sample could predict the PS ability of participants
in an external independent sample of older adults but not in samples of
younger adults or middle-aged adults, showing that our predictive mod-
els were robust, generalizable and specific to the older adults. Our study
provides promising evidence that resting-state functional connectivity
across multiple regions can be used to identify individual differences in
PS in older adults.

4.1. Age specificity of PS-CPM network

In this study, we have successfully demonstrated that the whole-
brain resting-state functional connectivity data could predict PS in
older adults using the CPM method. Resting-state functional connec-
tivity has been consistently recognized as quite well-suited for clinical
applications, as it can be obtained from populations who have diffi-
culty performing tasks within a short period (Fox and Greicius, 2010).
In addition, the scanning protocol for resting-state fMRI is relatively
standard, which promotes the generalizability of the predictive mod-
els in other big data sets (Smith et al., 2013). Besides, a large body
of literature has shown its predictive ability in different functions
(Arnemann et al., 2015; Liu et al., 2018; Ramos-Nuiiez et al., 2017;
Siegel et al., 2016). Given that abnormal changes in the brain took
place years before the clinical symptoms occurred in the neurodegen-
erative disorders (Pievani et al., 2014; Villemagne et al., 2013), rs-

C1 C2 C3 C4 C5

Combined network

fMRI seems like an attractive neuromarker for clinical prognoses. Be-
sides, external validation analyses revealed that our PS-CPM models
could be generalized to predict PS in an independent sample of older
adults, indicating that our predictive models were relatively robust.
Taken together, our findings suggest these age-related neuromarkers
might complement conventional assessments and yield potential clinical
benefits.

On the other hand, CPM models generated from older adults could
not be generalized to younger and middle-aged adults. There are several
possible reasons. First, the variance in the older adults of the Cam-CAN
data set was significantly larger than the variance in the younger and
middle-aged groups. Besides, we could not find internally validated CPM
models that could predict the CRT score in these two groups. These find-
ings could suggest that the resting-state functional connectivity might
not be able to capture the small individual variability of the processing
speed as assessed by the CRT in the younger and middle-aged adults.
Second, our internal validation data set only included older adults. Thus,
only a limited range of PS scores were trained in the model construc-
tion, which might explain why the model could not capture the cogni-
tive characteristics outside the included range. Future work could build
PS-CPM models on samples with more diverse age and behavioral score
ranges, and test their generalizability across different age groups. Third,
the PS-CPM networks were not similar to the SA-CPM networks derived
from younger adults (Rosenberg et al., 2016). This might suggest that
our PS-CPM primarily captured the neurocognitive function variance in
older adults.
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4.2. Domain specificity of PS-CPM network

We observed that the PS-CPM models could also predict attention
and memory in the same sample with which we had worked. On the
other hand, our exploratory analysis confirmed that the prediction was
largely driven by the association between the PS and attention/memory.
Besides, the PS-CPM models could still predict PS even after control-
ling for attention/memory. These results suggested that our model was
also predictive of memory and attention functions, which was likely
to be due to their shared processes with processing speed, since their
associations disappeared after controlling for processing speed. On the
contrary, our model was likely to capture relatively unique cognitive
processes of processing speed, given the predictivity was maintained
even after controlling for attention and memory. Therefore, the PS-CPM
model should be applied to primarily predict processing speed, and its
predictivity on other cognitive functions may be bound by common pro-
cesses shared by those functions with processing speed.

Previous studies have demonstrated that attentional CPM models can
predict other cognitive functions, such as inhibition control (Fountain-
Zaragoza et al., 2019) and memory recall (Jangraw et al., 2018). These
findings suggest that the predictive CPM networks of a certain neurocog-
nitive ability might be useful for predicting other related neurocogni-
tive abilities. The PS theory of aging suggests that PS is the leading
predictor of changes in cognitive abilities, especially in fluid abilities
(Salthouse, 1996). Accumulated evidence supports that PS is associated
with attentional deficits (Forn et al., 2013; Silva et al., 2018, 2019) and
predicts memory performance (Brébion et al., 2000; Finkel et al., 2007;
Hedden et al., 2005; Levitt et al., 2006; Zaremba et al., 2019). Our study
not only confirmed that PS had a close relationship with attention and
memory but also revealed that functional connectivity models predict-
ing PS could provide useful information about attention and memory
performance. Based on the general slowing theory, aging is accompanied
by a general reduction in PS that in turn leads to deterioration in cogni-
tive functions such as attention and memory performance (Finkel et al.,
2007; Luo and Craik, 2008; Salthouse, 1996). Our findings could sug-
gest that declines in attention and memory functions might be caused
by the alteration in the overlapping neural systems between the PS and
these cognitive functions. Research has indicated that the frontopari-
etal, motor and cerebellum networks are involved in attention processes
(Bush, 2011) and recognition memory (Meyer and Damasio, 2009). In
line with these findings, our PS-CPM networks, encompassing the frontal
and parietal regions as well as the cerebellum, appear to be applicable
for predicting attention and memory. Future work could test the speci-
ficity and generalizability of the PS-CPM models in other PS and cogni-
tive tests.

4.3. Connectome patterns of the fast- and slow-PS networks

The fast- and slow-PS networks generated from the CPM revealed
that functional connectivity across multiple neural systems (i.e., the
motor, SubC, frontoparietal, medial frontal, default-mode and visual-
related networks) could be used to predict PS in older adults. A
large amount of literature has investigated the age-related changes in
these neural networks and their relationships with PS (Eckert, 2011;
Ferreira and Busatto, 2013). Resting-state study found that increased
connections within the motor network was associated with better SDMT
performance (Koenig et al., 2014). Normal aging might disrupt the func-
tion of the motor network, which could affect the preparation and plan-
ning of movements and result in longer reaction times (Wu et al., 2007).
Structural declines in the frontal lobe and the cerebellum were thought
to contribute to age-related decline in PS (Eckert et al., 2010; Lu et al.,
2013). The default-mode network has consistently been shown to de-
crease in network connectivity through the aging process, resulting in
general cognitive decline (Hafkemeijer et al., 2012; Hohenfeld et al.,
2018; Prvulovic et al., 2011). The visual network, along with other
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attention networks, becomes less cohesive across the human lifespan
(Betzel et al., 2014), which might affect the task performance.

Further comparison between the fast- and slow-PS networks re-
vealed distinct connectome patterns among the eight functional net-
works (Fig. 3). The fast-PS network included more within-network con-
nectivity in the motor and visual I networks, while the slow-PS net-
work included more between-network connectivity in the motor-SubC
and motor-frontoparietal networks. In other words, a faster PS was as-
sociated with more within-network connectivity in the motor and vi-
sual I networks. A previous study found that aging was associated with
less connectivity within the motor network (Varangis et al., 2019), and
older adults exhibiting stronger connectivity within the motor network
outperformed their peers in motor and speed functions (Seidler et al.,
2015). The visual-related network has also been found to be activated
during the SDMT task (Forn et al., 2013). A meta-analysis revealed that
the primary visual cortex (BA17, visual I network) plays an essential role
in PS and it participates in the detection of visual patterns and visual
attention (Silva et al., 2019).

On the other hand, we found more between-network connectivity in
the motor-SubC, motor-frontoparietal networks in the slow-PS network,
compared to the fast-PS network, which indicated a slower PS. It is sug-
gested that stronger connectivity between the motor and SubC networks
was associated with better precision in motor tasks (Schlerf et al., 2014).
The cortico-thalamo-cerebellar circuit, including the motor cortex, cere-
bellum, thalamus and striatum, is involved in subserving the precise mo-
tor control function and cognition (Haber and Calzavara, 2009; Manto
et al., 2012; Stoodley, 2012). Additionally, cerebellar projections could
induce a reduction of excitatory output (inhibition) from the cerebel-
lum through the thalamus to the motor cortex, leading to modified and
precise motor control (Daskalakis et al., 2004). Along with these find-
ings, our results indicate that more connectivity between the motor and
SubC networks contribute to the precise performance in the SDMT task,
however, at the expense of speed. In regard to the motor-frontoparietal
connectivity, previous studies found the connectivity between the motor
and the frontoparietal networks was negatively related to motor learn-
ing (Mary et al., 2016), suggesting that connectivity between the motor
and non-motor networks (e.g., the cognitive control network) might af-
fect the motor performance and PS. The increased connectivity between
the frontoparietal and motor networks might indicate an enhanced top-
down control of motor execution and task operation, due to the lack
of sufficient communication within the motor network in older adults
(King et al., 2017).

Taken together, the connectome patterns derived from our CPM
models in the older adults revealed more within-network connectivity
in the fast-PS network, while there was more between-network connec-
tivity in the slow-PS network. Increased within-network connectivity
represented higher functional segregation of brain networks; whereas,
increased between-network connectivity represented higher functional
integration of brain networks (King et al., 2017). Here, functional segre-
gation refers to highly clustered connectivity in networks and functional
integration refers to connections between networks that allow integra-
tion of information from different networks (Damoiseaux, 2017). Our
results might suggest that functional segregation in the key brain net-
works (i.e., motor networks, SubC networks) plays an important role
in supporting certain cognitive functions in older adults. Functional
connectivity studies have converged with the observations, demon-
strating that older adults have lower network segregation and higher
network integration compared to younger adults (Cao et al., 2014;
Damoiseaux, 2017; Geerligs et al., 2014). The decreased segregation
was found to be associated with age-related decline in motor perfor-
mance (Cassady et al., 2019; King et al., 2017). Consistent with existing
findings, the connectivity patterns generated from our CPM suggest that
functional segregation in the motor network is vital for PS functioning in
older adults, and higher connections between different networks might
indicate an insufficient neural system and a compensatory mechanism
to implement certain tasks (Morcom and Johnson, 2015).
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4.4. Limitations

Several limitations should be acknowledged in this study. First, our
significant findings were generated from rather modest sample sizes
(older adults, our sample: n = 99; Cam-CAN sample: n = 91); however,
they can be further verified and validated by studies using a relatively
larger sample size. Second, our sample and the Cam-CAN sample signif-
icantly differed in their distributions of sex, age and education. Future
studies could recruit more homogenous internal and external validation
samples. Third, task-fMRI (Greene et al., 2018; Rosenberg et al., 2016)
and multimodal brain data (Jiang et al., 2019) have been suggested to
improve prediction accuracy. Future work could explore the usefulness
of incorporating task-fMRI and multimodal brain data in order to fur-
ther improve overall model accuracy. Fourth, our study provided pre-
liminary evidence that resting-state connectivity could predict the cur-
rent PS level in older adults. PS has been found to show an inverted U
developmental trajectory throughout the life span (Finkel et al., 2009;
Nettelbeck and Burns, 2010). Based on our study, it would be of great
interest to predict the change of PS throughout life span by using a lon-
gitudinal design in future work.

5. Conclusion

In conclusion, findings of this study clearly indicate that resting-state
functional connectivity across multiple neural systems (i.e., the motor,
SubC, frontoparietal, medial frontal, default-mode and visual-related
networks) can be used to predict PS in older adults. Furthermore, the
connectivity patterns generated from the PS-CPM models could be use-
ful for predicting attention and memory performance in older adults.
The findings of this study provide evidence that resting-state functional
connectivity can be applied to characterizing individual differences in
PS in older adults. Further work could help to accumulate evidence on
the feasibility and usefulness of applying connectome-based predictive
models to understand these neurocognitive abilities. Our results might
aid with the clinical diagnosis, prognosis and management of people
undergoing aging.
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