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Abstract

Brain neocortex is usually dominated by visual input (with eyes open [EO]), whereas this visual predominance
could be reduced by closing eyes. Cutting off visual input from the eyes (with eyes closed [EC]) would also ben-
efit other sensory performance; however, the neural basis underlying the state-switching remains unclear. In this
study, we investigated the brain intrinsic activity of either the EO or EC states by using the resting-state func-
tional magnetic resonance imaging data from 22 healthy participants. The 10 resting-state networks (RSNs) of
these participants were explored by the independent component analysis method. Within each RSN, various net-
work parameters (i.e., the amplitude of low-frequency fluctuation, the voxel-wise weighted degree centrality, and
the RSN-wise functional connectivity) were measured to depict the brain intrinsic activity properties underlying
the EO and EC states. Taking these brain intrinsic activity properties as discriminative features in a linear clas-
sifier, we found that the EO and EC states could be effectively classified using the intrinsic properties of the sen-
sory dominance networks and the salience network (SN). Further analysis showed that the brain intrinsic activity
within the sensory dominance networks was constantly overwhelmed during the EC state relative to that in the
EO state. The SN might play a key role as a switcher between state-switching. Therefore, this study indicated that
the brain intrinsic activity in the sensory dominance networks would be enhanced with EC, which might improve
other sensory-relative task performance.

Keywords: eyes closed; discriminative analysis; independent component analysis; resting-state functional mag-
netic resonance imaging; visual dominance

Introduction

The operation of brain neocortex exhibits multisen-
sory properties, in which the visual modality is essen-

tially of predominance (McGurk and MacDonald, 1976).
Other sensory-relative task performances could be improved
as this visual predominance reduced (Bavelier and Neville,
2002; Colavita, 1974; Merabet et al., 2008; Zubek, 1969).
Although the obvious modulation effect of visual modality
on brain function has been observed, the underlying neural
essence remains unclear.

Brain intrinsic connectivity networks (Seeley et al., 2007)
or resting-state networks (RSNs) (Greicius et al., 2003) are
highly self-organized brain functional systems and can be

characterized in terms of various network properties. Nota-
bly, previous studies have shown that the brain activity is re-
sponse to task performances within a module (Cordes et al.,
2000; Greicius et al., 2003). During the resting state, the brain
intrinsic activity within or between RSNs has been demonstra-
ted to highly resemble the brain activity during task state (Fox
et al., 2006; Mantini et al., 2007; Zuo et al., 2010). Despite
this, extensive evidence suggested that the interactions be-
tween RSNs exhibit functional implications, which embody
the resource integration from different brain intrinsic net-
works (Bullmore and Sporns, 2012; Cole et al., 2013).

Regarding the brain intrinsic organization, many previous
studies have indicated that the intrinsic brain activity proper-
ties are affected by the situation whether the subjects have

1Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of
Psychology, South China Normal University, Guangzhou, China.

2School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
3Guangdong Polytechnic Normal University, Guangzhou, China.
4The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong.
*These authors contributed equally to this work.

BRAIN CONNECTIVITY
Volume 9, Number 2, 2019
ª Mary Ann Liebert, Inc.
DOI: 10.1089/brain.2018.0644

221



their eyes open (EO) or eyes closed (EC) (Liang et al., 2014;
Yan et al., 2009; Yang et al., 2007). Switching between the
EC and EO states could alternate the brain intrinsic activity
in many RSNs, such as the visual (Yang et al., 2007), the sen-
sorimotor (Liang et al., 2014; Marx et al., 2004), and the
default-mode network (DMN) (Yan et al., 2009; Yang et al.,
2007). In addition, previous researches have observed the in-
fluences of switching between the EC and EO states on func-
tional connectivity (He et al., 2009; McAvoy et al., 2012; Wu
et al., 2010; Yan et al., 2009; Zou et al., 2009) and network to-
pological organization (Jao et al., 2013; Xu et al., 2014). More
importantly, the brain intrinsic activity properties could be ef-
fectively used to distinguish the EO and EC states (Zhang
et al., 2015).

The present study aimed to systematically investigate the
modulation effect between the EC and EO states on an aspect
of the brain RSNs by using a linear classifier discrimination
approach. To this end, we collected the resting-state func-
tional magnetic resonance imaging (rs-fMRI) data from 22
healthy participants under the EO and EC states, and we
adopted the independent component analysis (ICA) to iden-
tify in total of 10 RSNs. Then, the intrinsic activity proper-
ties, that is, the amplitude of low-frequency fluctuation
(ALFF), the voxel-wise weighted degree centrality (WDC),
and the functional connectivity strength (FCS) of each
RSN were measured. These RSN properties were used as
classification features in a linear classifier discrimination
analysis to distinguish the EC and EO states and to determine
the contributions of each RSN on discrimination.

Materials and Methods

Participants

We recruited 22 right-handed healthy voluntaries (11
males/11 females, 20 – 2.74 years) from the Beijing Normal
University for the present study. This study was approved by
the institutional review board of the Beijing Normal Univer-
sity Imaging Center for Brain Research. Written informed
consent was given by each participant. All the participants
were paid as compensation for their participation. Partici-
pants were instructed about the two conditions (i.e., EO
and EC) before the fMRI scanning. To prevent the partici-
pants from falling into sleep while scanning, participants
were instructed to perform a ‘‘pseudo’’ arithmetic judgment
task in which the arithmetic question presented in an auditory
form. Participants would press the left button when the ques-
tion was correct, otherwise, would press the right button.
This procedure was designed to make sure that these partic-
ipants stayed awake during the EO and EC states. However,
there were actually no tests during the real scanning proce-
dure so as to retain the purity of the resting-state data.

Data acquisition

All participants were scanned on a 3T Siemens Trio TIM
MR scanner equipped with a 12-channel, phased array
receiver-only head coil at the Imaging Center for Brain
Research, Beijing Normal University, using a gradient-echo
echo planar imaging (EPI) sequence with the following param-
eters: TR = 2000 ms, TE = 30 ms, 33 transverse slices, slice
thickness = 3.5 mm, gap = 0.7 mm, flip angle = 90�, FOV = 224
· 224 mm, matrix = 64 · 64, and 240 volumes covering the

whole brain. The rs-fMRI scans of the EC (lasting for 8 min)
and EO (lasting for 8 min) conditions from each participant
were obtained in the same session. The acquisition order of
the EC and EO scan data were counterbalanced across all
participants. In addition, this study also collected a high-
resolution 3D brain structural image for each participant
using the MP-RAGE sequence with the implementation of
the parallel imaging scheme GeneRalized Autocalibrating Par-
tially Parallel Acquisitions (GRAPPA) (Griswold et al., 2002)
and an acceleration factor of 2.

Data preprocessing

Data preprocessing was performed using the GRETNA
toolbox (Wang et al., 2015) and SPM8 (www.fil.ion.ucl
.ac.uk/spm). The first four functional images were dis-
carded because of the initial scanning signal instability. The
remaining functional images were corrected for within-scan
acquisition time differences between slices, and then, all
images were realigned to the first volume due to head mo-
tion. The excessive head motion of all the subject image data
met the criteria of >1 mm displacement or an angular rotation
of >1� in any direction. The summary scalars of both gross
(maximum and root mean square) and micro (mean frame-
wise displacement) head motion were matched between the
two states (all p > 0.14). Using an optimum 12-parameter
affine transformation and nonlinear deformations, the motion-
corrected data were then spatially normalized onto the
Montreal Neurological Institute space and resampled to a
voxel size of 3 · 3 · 3 mm3. Subsequently, low-frequency
temporal band-pass filtering (0.01–0.1 Hz) was performed on
the time series of each voxel. Besides removing the linear
trend, several nuisance signals, including 24-parameter head-
motion profiles (Friston et al., 1996; Yan et al., 2013), mean
white matter signals, and cerebrospinal fluid signals, were
also regressed out from each voxel’s time course. Notably,
unless otherwise stated, no spatial smoothing was applied in
the data processing as previous studies have found that
smoothing could induce spurious local correlations (Zuo
et al., 2012).

Spatial ICA

We used GIFT (http://icatb.sourceforge.net) to perform
the spatial ICA to identify brain intrinsic networks under
the EO and EC states. First, the spatial smoothing with a
Gaussian kernel of 8 mm full-width at half-maximum was
conducted to the preprocessed rs-fMRI data. Second, we
performed the principle component analysis (PCA) to reduce
the data dimensions. Herein, we calculated PCA in two steps:
the data for each individual participant were temporally
dimension-reduced, and then, the dimensions were again
reduced to the optimal numbers after concatenation across
subjects within groups. Third, the data were separated by
ICA using an extended infomax algorithm (Lee et al., 1999).
After ICA separation, the mean independent components and
the corresponding mean time courses over all the participants
were used for the back-reconstruction of the independent
components and the time courses for each individual par-
ticipant (Calhoun et al., 2001). Finally, the intensity values in
each independent component spatial map were converted to
Z-scores, and a one sample t-test (false discovery rate [FDR],
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p = 0.01) was then performed under the EO and EC states to
determine the RSNs.

Brain intrinsic activity metrics

Amplitude of low-frequency fluctuation. The ALFF (Yang
et al., 2007) is applied to measure the spontaneous neural ac-
tivity within each voxel of the whole brain by using the pre-
processed data. ALFF is defined as the total power within the
frequency range between 0.01 and 0.1 Hz and thus indexes
the strength or intensity of low-frequency oscillations (Yu-
Feng et al., 2007).

In this study, the ALFF calculation was carried out using
GRETNA. The preprocessed time series of each voxel was
first transformed to the frequency domains by using fast
Fourier transform. Then, the square root was calculated at
each frequency of the power spectrum, and the averaged
square root was obtained across 0.01–0.1 Hz, which was
taken as the ALFF. Finally, the ALFF of each voxel was di-
vided by the global mean ALFF value in each participant for
normalization.

Voxel-wise WDC. The voxel-wise WDC based on graph
theory was used to quantify the functional integration of
each voxel with others in a network. Degree centrality
(DC) is the number of edges connecting to a node. For a
weighted graph, it is defined as the sum of weights from
edges connecting to a node or the node strength. DC can
be computed as the formula:

DC(i) = +
N

j =1
aij:

All nodes are defined 1 £ i £ N, 1 £ j £ N, and aij represents
the connection or edge from node i to node j.

The functional integration was measured using the FCS in-
dicated by the Pearson correlation coefficients of the BOLD
(blood oxygen level-dependent) signals between each spe-
cific voxel and the rest of other voxels. All the selected vox-
els were masked by the grey matter probability map in SPM8
(threshold = 0.2). A threshold procedure was used to remove
the spurious weak correlations, in which the statistical signif-
icance was set at the level of p < 0.05 (Bonferroni corrected).
Particularly, only the positive correlation was included into
the calculation because of the ambiguous interpretation and
detrimental effects of the negative correlation on test–retest
reliability (Fox et al., 2009; Murphy et al., 2009; Wang
et al., 2011; Weissenbacher et al., 2009). And a distance
threshold was set at 75 mm to classify the long and short
functional connectivity (He et al., 2009); thus, there were
three types of WDC (i.e., long-degree-centrality [LDC],
short-degree-centrality [SDC], and DC) acquired for each
participant. Based on these metrics, the values of the DC
at each voxel indicated the different functional integrations
over the whole brain. Of note, the WDC was normalized
within each individual by translating to Z-scores using
the GRETNA toolbox.

RSN-wise FCS. The mean time series of each RSN were
extracted to calculate the inter- and intra-RSN FCS. Pearson
correlation coefficients between the mean time series of any
possible pair of the 10 RSNs were calculated, which led to a
10 · 10 correlation matrix for each subject. Finally, the aver-

age correlation of each RSN with other RSNs was measured
using a previous method (He et al., 2009; Jiang et al., 2004).
In this method, the FCS between two RSNs was equally di-
vided into the two RSNs.

Discriminative analyses

A maximum uncertainty linear discriminant analysis
(MLDA) (Thomaz et al., 2004, 2007) was used to classify
the EC and EO states. A previous study suggested that the
MLDA approach seeks a set of projection directions that
maximize the between-class margin and simultaneously min-
imize the within-class compactness (Dai et al., 2014). Based
on this classifier, the EC and EO label can be mapped onto
the discrimination hyperplane, and the amount of discrimina-
tive feature can be quantified using the coefficients of the dis-
crimination hyperplane. A leave-one-out cross-validation
approach was adopted to optimize the feature selection by re-
ducing the data dimensions ( p < 0.05, paired two-tailed t-
tests, FDR correction). The feature selection was performed
only in the training data so as to keep the independence of the
training data and the test data. By using a linear classifier, the
contribution of the single RSN property (e.g., WDC) to dis-
crimination was evaluated, independently. After classifica-
tion, we explored whether the classification accuracy was
significantly above the random level by using an approach,
which randomly disturbed the order of category labels to re-
peat the classification process (n = 100).

Besides the single linear classifier approach, a multi-
classifier approach (each RSN property corresponding to a
linear classifier) was applied to investigate the concatenate
effect of all these RSN properties (i.e., ALFF, LDC, SDC,
DC, and FSC) on the classification performance. In this
multi-classifier discrimination process, a weighted voting
method was used to evaluate the contribution of these RSN
properties to classification. Notably, using this approach,
the weight of each RSN property on classification was first
evaluated with each single linear classifier (one RSN prop-
erty related to a linear classifier), and then, the weight of
these RSN properties from different classifiers was further
calculated by using a voting approach (for details, see Dai
et al., 2012). And finally, the significance of the multi-
classifier discrimination results was evaluated using the ap-
proach as the single linear classifier.

To date, the multi-classifier method has been successfully
used to identify Alzheimer’s disease (AD) patients from nor-
mal controls (Dai et al., 2012) and to distinguish the resting-
state and task-state fMRI (Gao et al., 2017). The more
detailed information of this method could also be found in
these previous studies (Dai et al., 2012; Gao et al., 2017).

Results

Resting-state networks

We identified 10 brain functional RSNs by using the spa-
tial ICA method. These RSNs include the anterior DMN, the
auditory network, the central executive network, the dorsal
attention network, the high-level visual network (HVN),
the posterior DMN, the primary sensory-motor network
(PSMN), the primary visual network (PVN), the salience net-
work (SN), and the ventral motor network (VMN) (Fig. 1 and
Table 1).
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Brain intrinsic activity metrics

We also calculated the voxel-wise ALFF, LDC, SDC, and
DC metrics and RSN-wise FCS metric of these 10 brain
RSNs for each participant under the EC and EO states, sep-
arately (Fig. 2).

Univariate comparisons of RSN intrinsic activity

By using a paired two-tailed t-test, we statistically com-
pared all the brain intrinsic activity properties of each RSN
we measured between the EO and EC states. The results
showed that the ALFF under the EC state was significantly
higher than that in the EO state in the PSMN ( p = 0.0061,
FDR) and the VMN ( p = 0.0062, FDR). Higher LDC in the
EC state than in the EO state was observed to be statisti-
cally significant in the PVN ( p = 0.0001, FDR), the HVN
( p = 0.0004, FDR), the PSMN ( p = 0.0005, FDR), and the
VMN ( p = 0.0039, FDR). However, the EO state exhibited
a higher LDC than the EC state in the SN ( p = 0.0029,
FDR). The SDC of the PSMN ( p = 0.0006, FDR) in the EC

state was higher than that in the EO state. The EC state
obtained a higher DC in the HVN ( p = 0.0077, FDR), the
PSMN ( p = 0.0002, FDR), and the VMN ( p = 0.0213, FDR),
but a lower DC in the SN compared with the EO state. On
an aspect of FCS, the EC state exhibited a higher functional
connectivity integration in the PVN ( p = 0.0026, FDR) and
the HVN ( p = 0.0061, FDR) than the EO state (Table 2).

Discrimination performance

By using MLDA, this study found that the selected RSN
properties exhibited a discriminative power to distinguish
the EC and EO states (Table 3). The discriminative accuracy
of the classifier with each of the RSN properties (i.e., ALFF,
LDC, SDC, DC, and FCS) as features was significantly
above the random level (all p < 0.05), respectively. More im-
portantly, by using a multi-classifier approach, the present
findings showed that the concatenate effect of these RSN
properties could obviously improve the classification accu-
racy (Table 3).

FIG. 1. RSNs derived from the spatial ICA analysis. aDMN, anterior default-mode network; AN, auditory network; CEN,
central executive network; DAN, dorsal attention network; HVN, high-level visual network; ICA, independent component
analysis; pDMN, posterior default-mode network; PSMN, primary sensory-motor network; PVN, primary visual network;
RSNs, resting-state networks; SN, salience network; VMN, ventral motor network. Color images are available online.

Table 1. Details of the Selected Resting-State Networks

Index RSNs Regions

Coordinates

tX Y Z

1 aDMN Frontal_Sup_Medial_L 0 54 15 18.59
2 AN Temporal_Sup_L �54 �12 6 18.59
3 CEN Frontal_Inf_Tri_R 51 27 27 14.33
4 DAN Parietal_Sup_L �18 �75 51 19.68
5 HVN Occipital_Sup_R 24 �102 9 19.24
6 pDMN Cingulum_Mid_R 3 �30 30 25.31
7 PSMN Supp_Motor_Area_R 3 �15 69 17.98
8 PVN Lingual_R 6 �84 �3 18.75
9 SN Cingulum_Ant_L �9 39 �3 24.27

10 VMN Postcentral_R 60 �6 33 18.88

The coordinates are the peak voxel value of each RSN in MNI space. The regions are those in which the peak voxels were located at. The t-
value indicates the scores of the one-sample t-test ( p < 0.001, FDR corrected).

aDMN, anterior default-mode network; AN, auditory network; CEN, central executive network; DAN, dorsal attention network; FDR,
false discovery rate; HVN, high-level visual network; L, left hemisphere; MNI, Montreal Neurological Institute; pDMN, posterior default-
mode network; PSMN, primary sensory-motor network; PVN, primary visual network; R, right hemisphere; RSN, resting-state network; SN,
salience network; VMN, ventral motor network.
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FIG. 2. The maps of ALFF, LDC, SDC, DC, and FCS across 10 RSNs of EC and EO. (A) ALFF; (B) LDC; (C) SDC; (D)
DC; (E) FCS. One to 10 represent aDMN, AN, CEN, DAN, HVN, pDMN, PSMN, PVN, SN, and VMN. These RSNs were
selected using a one sample t-test (FDR, p = 0.01). ALFF, amplitude of low-frequency fluctuation; DC, degree centrality; EC,
eyes closed; EO, eyes open; FCS, functional connectivity strength; FDR, false discovery rate; LDC, long-degree-centrality;
SDC, short-degree-centrality. Color images are available online.
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Contribution of RSNs in discrimination

By using these RSN properties as classification features,
the present study used the MLDA classifier to discriminate
the EO and EC states. All the selected features and their rel-
ative weights in each classifier are shown in Figure 3. We
found that the well-identified features are mainly located at
the visual network, the sensorimotor-related network, and
the SN. It should be noted that the spontaneous activity am-
plitude (ALFF) and the functional connectivity strength (DC,
LDC, SDC, and FCS) contributed differently in the classifi-
cation performance. On an aspect of ALFF, we found that
the sensorimotor-related networks (i.e., the PSMN and the
VMN) took important roles in classification of the two states.
As to the FCS, the visual network and the SN as well as the
sensorimotor network were essential as features to discrimi-
nating the two states. Furthermore, the different types of RSN
properties performed differently on discrimination. For de-
tails, the short-term functional connectivity (SDC) of the
PSMN could effectively discriminate the two states, but the
visual network, the sensorimotor network, and the SN were
more sensitive to long-term functional connectivity (LDC)
for the classification. In addition, the voxel-wise functional
connectivity and the RSN-wise functional connectivity carried

discriminative information in classification of the EO and EC
states. The visual network performed well on the RSN-wise
functional connectivity, whereas the visual network and the
sensorimotor network achieved classification performance
from the voxel-wise functional connectivity features.

Discussion

By using MLDA, our study explored the alternation of the
brain intrinsic activity between the EC and EO states. The
main findings can be summarized as follows: (i) the intrinsic
activity of sensory dominance networks (i.e., sensorimotor
and visual networks) was significantly modulated by switch-
ing between the EC and EO states; (ii) the SN may play an
important role when the spontaneous amplitude activity
and the functional integration of sensory dominance net-
works were altered between the EC and EO states; (iii) the
brain intrinsic activity in the sensory dominance networks
enhanced during the EC state compared with the EO state.

Previous studies have documented that there are distinct
mental states between the EO and EC states (Marx et al.,
2003; Mazard et al., 2005). There is an ‘‘exteroceptive’’ mental
activity state that includes the ocular motor and attention

Table 2. Results of Comparisons of Resting-State Network Intrinsic Activity

Between Eyes Closed and Eyes Open

aDMN AN CEN DAN HVN pDMN PSMN PVN SN VMN

ALFF
p 0.907 0.099 0.960 0.788 0.348 0.428 0.006 0.538 0.748 0.006
t-stat �0.118 1.682 �0.051 0.271 0.949 0.799 2.877** 0.620 0.324 2.871**
Delta �0.160 3.919 �0.075 0.537 1.920 1.548 7.675 1.865 0.538 5.199

LDC
p 0.1964 0.4855 0.0876 0.2573 0.0004 0.0704 0.0005 0.0001 0.0029 0.0039
t-stat �1.3109 0.7032 �1.7455 �1.1469 3.8406** �1.8523 3.7353** 4.3699** �3.1521** 3.0354**
Delta �0.1050 0.0542 �0.1064 �0.0913 0.3447 �0.1678 0.3077 0.4531 �0.1624 0.2579

SDC
p 0.2784 0.3389 0.1883 0.1757 0.1507 0.4359 0.0006 0.6322 0.1952 0.1314
t-stat �1.0969 0.9665 �1.3355 �1.3752 1.4613 0.7861 3.6726** 0.4818 �1.3145 1.5359
Delta �0.0587 0.0761 �0.0688 �0.1165 0.1363 0.0730 0.4007 0.0705 �0.0944 0.1280

DC
p 0.2367 0.3801 0.1561 0.1458 0.0077 0.5815 0.0002 0.0498* 0.0412 0.0213
t-stat �1.1988 0.8863 �1.4421 �1.4797 2.7897** �0.5551 4.0751** 20.148* �2.1000* 2.3837*
Delta �0.0837 0.0735 �0.0851 �0.1233 0.2472 �0.0542 0.3955 0.2437 �0.1368 0.2120

FCS
p 0.3418 0.0833 0.1781 0.1805 0.0061 0.1684 0.0611 0.0026 0.4888 0.0983
t-stat 0.9605 1.7704 1.3677 1.3600 2.8724** 1.3993 1.9195 3.1782** 0.6978 1.6872
Delta 0.1509 0.2914 0.2414 0.2444 0.5011 0.2273 0.3361 0.5172 0.1099 0.3062

Delta value = EC � EO.
*p < 0.05; **p < 0.01.
ALFF, amplitude of low-frequency fluctuation; DC, degree centrality; EC, eyes closed; EO, eyes open; FCS, functional connectivity

strength; LDC, long-degree-centrality; SDC, short-degree-centrality.

Table 3. The Classifier Performance in Discriminating the Eyes Closed and Eyes Open Conditions

ALFF LDC SDC DC FCS Concatenate features

Sensitivity 0.8333 0.9167 0.6250 0.7083 0.7917 0.8750
Specificity 0.5833 0.6250 0.7083 0.6250 0.7083 0.7500
Accuracy 0.7083* 0.7708* 0.6667* 0.6667* 0.7500* 0.8125*

Concatenate feature, all the above features used for classification, *p < 0.05.
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activity during EO, and an ‘‘interoceptive’’ mental activity
state of multisensory and imagination activity during EC
(Marx et al., 2003, 2004). Previous electroencephalography
(EEG) studies also indicated that the distinct oscillatory signa-
tures have been identified in the alpha-band at prestimulus that
relates to an upcoming visual stimulus process (Fox and
Raichle, 2007; Foxe and Snyder, 2011). Similarly, these find-
ings suggested that the alpha-band power increased on the EC
states (Fox and Raichle, 2007). In other words, it suggested
that the neural spontaneous fluctuation activity constitutes a vi-
sual operation mode that is activated automatically even with-
out retinal input.

It should be noted that the exteroceptive and interoceptive
states may be related to specific brain activity patterns (Marx
et al., 2003, 2004). Correspondingly, many previous studies

have provided experimental evidence that the eye behavioral
states (e.g., the EO and EC states) modulate the brain spon-
taneous fluctuation activity within several systems, including
the sensorimotor network (Assaf et al., 2006; Mazard et al.,
2002, 2005), the visual network (Yang et al., 2007), and the
DMN (Yan et al., 2009). Our previous study, using the sup-
port vector machine, found that the spontaneous fluctuation
activity of the sensorimotor network could directly classify
the EO and EC states (Zhang et al., 2015). Furthermore,
the present study also showed that the fluctuation amplitude
pattern related to the sensorimotor and visual networks could
accurately distinguish the EC and EO states. The well-
identified features for the classification were primarily de-
rived from the intrinsic properties in the primary visual cor-
tex, the high visual cortex, the VMN, and the PSMN.

FIG. 3. The features for clas-
sification with discriminative
power related to 10 RSNs.
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Beyond this, we also found that the functional interaction
properties of the sensory-motor network (SMN) and the vis-
ual network (VSN) performed well in the classification of the
two states. In particular, our study showed that the voxel-
wise and the RSN-wise FCS contributed differently to the
classification. On the RSN-wise FCS, we found that the vi-
sual network (i.e., PVN and HVN) took important role in
the classification. While, on the voxel-wise FCS, the HVN
and the sensorimotor network (PSMN and VMN) exhibited
great power in classification. More importantly, we also
found that the different types of voxel-wise FCS performed
differently. On the short-term voxel-wise FCS, we found
that the PSMN is a core network to classify the two states;
but on an aspect of the long-term FCS, we found that the vi-
sual network (PVN and HVN), the sensorimotor network
(PSMN and VMN), and the SN converged to show great
power in the classification. Of note, we observed that the
spontaneous activity of sensorimotor network was associated
with that of the PVN when participants stayed in the EC state
(Wang et al., 2008). This observation may show that the
mental imagery-related pattern is an important aspect of
the difference of the EC and EO states. Moreover, the SN
may take an important role in this process. Previous studies
have demonstrated that the SN plays a role that may reflect
dynamic switching between large-scale networks (Beaty
et al., 2015; Seeley et al., 2007). Similarly, a previous
study of our group showed that the functional connectivity
directionality of the SN within a Bayesian network could ef-
fectively discriminate the two states (Zhang et al., 2015). In
this study, we also found that the concatenate effect of the sa-
lience, sensorimotor, and visual networks in classification.
Potentially, the mental imagery-related neural activity under-
lying the modulation of the SN is a characteristic of the
change between the EC and EO states. Nevertheless, these
findings will help to understand the neural substrate of
brain functional reconfiguration underlying the switch be-
tween the EC and EO states.

Although the involved regions were distinct in terms of
different types of features, all these observed features were
predominately located at the SMN and VSN and were con-
sistently improved in the EC state compared with the EO
state. It should be noted that the visual deprivation may im-
prove performance of other-modal perception, and even the
immediate visual deprivation (e.g., eye closure) can enhance
somatosensory processing sensitivity (Stronks et al., 2015).
Corresponding to these observations, this study also figured
out the improvement of the intrinsic activity of sensorimotor
network in terms of the ALFF and FCS. Besides this, our
study found that the intrinsic activity of the VSN was also
improved during the EC state when compared with that of
the EO state. These findings were highly corresponding to
many previous studies which found that the BOLD signal
variability was significantly improved during the EC state
when compared with that of the EO state (Bianciardi et al.,
2009; Fukunaga et al., 2006; Horovitz et al., 2008; Jao
et al., 2013; Liang et al., 2014). An important issue should
attracted attention is that the level of glucose metabolism
in visual regions was significantly decreased during the EC
state (Riedl et al., 2014) as well as the change of regional ce-
rebral blood flow (Zou et al., 2015). That is, there is a low
level of energy metabolism during the EC state related to
the EO state; the physiological findings may provide new ev-

idence to support the Chinese old sayings that ‘‘to conserve
energies by closing the eyes.’’ Despite this, the intrinsic activ-
ity measured by the BOLD signal was significantly improved
not only in the visual networks but also in other sensory dom-
inance networks such as the sensorimotor network, and the
higher intrinsic activity may be corresponding to a specific
mental state in which the imagination process is of impor-
tance, which may be related to the vividness imagery occur-
ring in the resting mind especially during the EC state.

Conclusion

This study employed a linear classifier discriminative ap-
proach to identify the brain intrinsic activity in classification
of the EC and EO states. We found that the spontaneous am-
plitude activity and the functional integration properties of
the sensory dominance networks (i.e., sensorimotor and vi-
sual networks) and the SN were significantly stronger during
the EC state compared with the EO state. The results support
the proposition that the EC state may induce a specific men-
tal state with enhanced intrinsic activity of sensory domi-
nance networks underlying the modulation of the SN. Our
findings might help understand the neural substrate of the
brain functional reconfiguration that underlies the alternation
between distinct mental states (i.e., the EC and EO states).
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