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A B S T R A C T

Previous studies have indicated a tight linkage between resting-state functional connectivity of the human brain
and creative ability. This study aimed to further investigate the association between the topological organization
of resting-state brain networks and creativity. Therefore, we acquired resting-state fMRI data from 22 high-
creativity participants and 22 low-creativity participants (as determined by their Torrance Tests of Creative
Thinking scores). We then constructed functional brain networks for each participant and assessed group dif-
ferences in network topological properties before exploring the relationships between respective network to-
pological properties and creative ability. We identified an optimized organization of intrinsic brain networks in
both groups. However, compared with low-creativity participants, high-creativity participants exhibited in-
creased global efficiency and substantially decreased path length, suggesting increased efficiency of information
transmission across brain networks in creative individuals. Using a multiple linear regression model, we further
demonstrated that regional functional integration properties (i.e., the betweenness centrality and global effi-
ciency) of brain networks, particularly the default mode network (DMN) and sensorimotor network (SMN),
significantly predicted the individual differences in creative ability. Furthermore, the associations between
network regional properties and creative performance were creativity-level dependent, where the difference in
the resource control component may be important in explaining individual difference in creative performance.
These findings provide novel insights into the neural substrate of creativity and may facilitate objective iden-
tification of creative ability.

1. Introduction

Creativity is commonly defined as the generation of novel and ori-
ginal ideas in a divergent and manifold manner, which is the basis of
human civilization and culture development (Guilford, 1950). A
growing body of neuroimaging research has demonstrated that an in-
dividual’s creative ability is highly related to patterns of resting-state
functional connectivity. For example, higher creativity measured by
tests of divergent thinking is associated with resting-state functional
connectivity (RSFC) between the medial prefrontal cortex (mPFC) and
the posterior cingulate cortex (PCC), both key nodes of the default
mode network (DMN) (Takeuchi et al., 2012). Similarly, Beaty et al.
found greater RSFC between the left inferior frontal gyrus (IFG) and the
entire default mode network in a high creativity group (Beaty et al.,

2014). Furthermore, research also suggests that increased RSFC be-
tween the mPFC and the middle temporal gyrus (mTG), which are both
located in the DMN, might be crucial to creativity, and that mPFC −
mTG connectivity can be improved by cognitive stimulation (Wei et al.,
2013). All of these studies suggest the importance of increased func-
tional interactions among distributed regions thought to underlie
creativity. Nevertheless, the architecture of these large-scale functional
networks contributing to creativity remain unclear.

Many previous studies have demonstrated that the intrinsic activity
of brain regions are complexly interconnected when individuals are in a
resting state, forming functional networks (Bullmore & Sporns, 2009;
van den Heuvel & Hulshoff Pol, 2010). The topological architecture of
resting-state networks can be depicted and explored using a graph-
based network analysis approach, which has shown that these networks
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are organized in a “small-world” and “scale-free” way
(Bullmore & Sporns, 2009). These properties not only ensure that the
human brain efficiently transmits information but is also robust in the
face of an attack (Watts & Strogatz, 1998; Barabási & Albert, 1999). Of
note, high clustering and high efficiency in a small-world architecture
contribute to cognitive functions that require either segregated or in-
tegrated information processing. On one hand, segregated processes,
such as visual processes, benefit from highly clustered connections; on
the other hand, integrated processes, such as executive functions,
benefit from high global efficiency of information transferred across the
whole network (Tononi, Sporns, & Edelman, 1994; Tononi & Sporns,
2003; Bullmore & Sporns, 2012). Recent studies have demonstrated that
creativity is highly dependent on functional integration
(Dietrich & Kanso, 2010; Wu et al., 2015); however, as yet few studies
have investigated how the topological characteristics of resting-state
functional networks contribute to creative ability. More importantly,
previous research has shown that brain network properties are tightly
associated with an individual’s cognitive abilities, such as level of in-
telligence (van den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009), working
memory (Langer, von Bastian, Wirz, Oberauer, & Jäncke, 2013) and
attentional capacity (Markett et al., 2014). Given that these cognitive
abilities are all important components of creativity, it is essential to
investigate the relation between creativity and the multiple brain net-
works which have been linked with creative performance (Beaty,
Benedek, Barry Kaufman, & Silvia, 2015; Beaty, Benedek,
Silvia, & Schacter, 2016), including the DMN which underpins sponta-
neous imagination and self-generated thought (Andrews-Hanna, 2012;
Andrews-Hanna, Smallwood, & Spreng, 2014) and the executive control
network (ECN) which is related to working memory, inhibition, in-
tegration, and switching (Seeley et al., 2007). Therefore, the complexity
of creativity and the wide involvement of multiple brain networks both
converged to suggest the rationality of the network perspective in
creativity studies.

The current study aimed to investigate the relationships between
the topological attributes of resting-state brain networks and individual
differences in creativity. We used the Torrance Tests of Creative
Thinking (TTCT) to identify high-creativity (n = 22) and low-creativity
(n = 22) groups (HG and LG, respectively) from one hundred and
eighty participants. Resting-state fMRI data were collected from HG and
LG participants, and network analyses based on graph theory were
implemented to measure the architectural properties of resting-state
functional networks. These network properties were compared between
the two groups, and within each group, associations between network
topological attributes and behavioral performance were computed
using multiple linear regression models.

2. Materials and methods

2.1. Participants

One hundred and eighty healthy volunteers (age = 18.88 ± 1.05
years, 85 males), which are all students enrolled at South China Normal
University (Guangzhou, China), participated in the behavioral assess-
ment; the results of this assessment were used to identify 22 high-
creativity and 22 low-creativity individuals according to the TTCT
scores distribution (see below for a detailed description of this process),
a method used in previous studies (Carlsson, Wendt, & Risberg, 2000;
Villarreal et al., 2013; Beaty et al., 2014). The HG and LG individuals
were well-matched with respect to age, gender, and intelligence (see
Results). These 44 participants, who completed a resting-state fMRI
scan, were all right-handed, with no history of neurological or psy-
chiatric problems. Exclusion criteria included an implant, device, or
object in the body. All participants provided written informed consent,
and the protocol was approved by the Research Ethics Review Board of
South China Normal University.

2.2. Behavioral assessment

The TTCT-figural version was used to identify high-creativity and
low-creativity individuals. The TTCT is widely used to measure key
aspects of creativity, such as divergent thinking. The TTCT has high
validity with respect to the measurement of divergent thinking (Kim,
2008) and is more predictive of creative achievements in different fields
than other divergent thinking tests (Kim, 2005). The TTCT-figural
version consists of three tasks: The first task requires participants to
imagine a picture or story based on an egg-shaped line figure; the
second task instructs participants to draw interesting things based on 10
unfinished pictures; and the third task instructs participants to draw
different objects by adding lines to 30 parallel lines. All tasks require
participants to imagine and draw novel answers as quickly as possible.
The TTCT total creativity score is based on scores for the following
dimensions of the creative process (each summed across all three tasks):
1) Fluency is measured by the number of relevant responses and is
related to the ability to produce many alternatives. 2) Flexibility is
measured by the number of categories that relevant responses can be
assigned to (according to specific criteria) and reflects the ability to
change perspective. 3) Originality is based on the degree of the ideas
produced that differ from others, and is measured by the number of
uncommon ideas generated (based on normative data) (De Souza et al.,
2010). Consistent with previous studies (Takeuchi et al., 2012; Wei
et al., 2013), our analysis only used the total creativity score. There is a
high association among the subscales in the TTCT; thus, each subscale
could not provide meaningfully different information
(Heausler & Thompson, 1988), and some have argued that independent
interpretations of TTCT subscores should be avoided (Treffinger, 1985).

Intelligence is associated with divergent thinking
(Nusbaum& Silvia, 2011; Benedek, Franz, Heene, & Neubauer, 2012;
Benedek, Jauk, Sommer, Arendasy, & Neubauer, 2014; Silvia & Beaty,
2012); thus, we also assessed intelligence using the Raven’s Standard
Progressive Matrices (RSPM)-Chinese version. This version of RSPM has
good split-half reliability (0.95), and good test-retest reliabilities (0.82
and 0.79 over intervals of 15 days and 30 days, respectively).

Participants with TTCT total scores in the top 12% (n = 22, 11
males and 11 females) of the total sample were assigned to the high-
creativity group, while the participants in the bottom 12% (n= 22, 11
males and 11 females) were assigned to the low-creativity group. Of
note, we selected 12% as cut-off point for magnifying the difference of
creative ability between two groups and minimizing the influence of
gender differences on our results (Matud, Rodríguez, & Grande, 2007;
Lin, Hsu, Chen, &Wang, 2012).

2.3. MRI acquisition

All MRI data were obtained on a 3 T Siemens Trio Tim MR scanner
with a 12-channel phased-array head coil at South China Normal
University. The fMRI data were acquired using a gradient-echo echo-
planar imaging (EPI) sequence with the following parameters: repeti-
tion time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 90°,
matrix = 64 × 64, field of view (FOV) = 224 × 224 mm2, thickness/
gap = 3.5/0.8 mm, and 32 axial slices covering the whole brain.
During resting-state scanning, participants were instructed to keep their
eyes closed. Two hundred and forty functional volumes were obtained
during the 8-min scan.

In addition, 3D high-resolution structural images were obtained
using a 3D T1-weighted MP-RAGE sequence with the following para-
meters: TR = 1900 ms, TE = 2.52 ms, flip angle = 90°, ma-
trix = 256 × 256, FOV = 230 × 230 mm2, thickness = 1.0 mm, and
176 sagittal slices.
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2.4. Data analysis procedures

2.4.1. Behavioral data analysis
Behavioral data were analyzed using SPSS 17.0 (SPSS Inc., Chicago,

IL). Group differences in demographic variables (i.e., age, gender, in-
telligence, and TTCT total scores) were analyzed using independent-
sample t tests.

2.4.2. Functional imaging data preprocessing
All MRI data were processed using DPARSF_V2.0 (Yan & Zang,

2010) based on SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The pro-
cedures were as follows: (1) The first 10 vol were removed to allow for
scanner stabilization and participant adaptation to the MR environ-
ment. (2) Slice timing and realignment were performed to correct for
acquisition time delay and head motion. No participant was excluded
based on predefined criteria (i.e., head motion in any direction of more
than 1 mm or 1°). To assess the influence of the head motion on the
functional images (Mowinckel, Espeseth, &Westlye, 2012), we com-
pared the mean absolute value of head translations and head rotations
between the two groups. Statistical analyses indicated no significant
between-group differences in head motions (all p > 0.05). (3) The
acquired functional images were spatially normalized. Each partici-
pant’s structural image was initially coregistered to the mean functional
image. The transformed structural image was then segmented into gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using a
unified segmentation algorithm. Finally, the functional brain images
were spatially normalized to MNI space using the normalization para-
meters estimated during unified segmentation. To reduce physiological
noise and low frequency drift in the fMRI data, data were band-pass
filtered (0.01-0.08 Hz) and a linear trend was also removed. Spatial
smoothing (Gaussian kernel full-width at half-maximum = 4 mm) was
performed to improve the signal-to-noise ratio. Moreover, we regressed
out nuisance covariates, including 24 head motion parameters as well
as WM and CSF signal. Of note, the global signal was not regressed out,
in line with recommendations arising from recent debates (Fox, Zhang,
Snyder, & Raichle, 2009; Murphy, Birn, Handwerker,
Jones, & Bandettini, 2009).

2.4.3. Construction of functional brain networks
For each participant, the whole brain was parceled into 160 cortical

and sub-cortical regions-of-interest (ROIs) using a functional template
derived from a previous study (Dosenbach, Nardos, & Cohen, 2010).
Each ROI time series was derived by averaging the time series over all
voxels within this region. A 160 × 160 correlation matrix was obtained
by calculating Pearson’s correlation coefficients for the time courses
from every pair of ROIs for each participant. We abandoned all negative
edges prior to weighted graph construction, which resulted in only
positive pairwise functional connections because negative correlations
may be statistically “noisy” or topologically distinct from networks
based on positive correlations (Wang et al., 2011). To construct func-
tional brain networks for each participant, we assessed each ROI as a
node and the value of the correlation coefficient of the brain regions as
the weight of the edge. Thus, we obtained a weighted symmetric
functional connectivity matrix for each participant.

2.4.4. Network analysis
2.4.4.1. Global parameters. We analyzed the topological properties of
brain networks based on graph theory. The following 8 parameters
were used to describe the global network attributes in detail (defined
according to Rubinov & Sporns, 2010; Tian, Wang, Yan, & He, 2011): 1)
Weighted clustering coefficient (Cw) which reflects the extent of
connectedness of nodal neighbors; 2) weighted characteristic path
length (Lw), the average shortest path length between all pairs of
nodes in the network which indicates potential functional integration
between brain regions; 3) global efficiency (Eglob) which indicates the
efficiency of parallel information transfer in the whole network; and 4)

local efficiency (Eloc), the average values of the local efficiency within
all nodes in the brain, which reflects the local cliquishness of a network.
Normalized global parameters used to quantify small-world topography
were: 5) normalized global efficiency (α), 6) normalized local efficiency
(β), 7) normalized weighted clustering coefficient, =γ C Cw

real
w
rand, and

8) the normalized weighted characteristic path length, =λ L Lw
real

w
rand,

where Cw
real and Lw

real represent the clustering coefficient and
characteristic path length of the real brain network, respectively, and
Cw

rand and Lw
rand represent the mean values of the corresponding

parameters derived from 100 matched random networks with the
same number of nodes, edges, and distribution of degrees as the real
brain network. Typically, a small-world network satisfies the following
criteria: γ > > 1 and λ≈ 1 or σ= γ/λ > 1 (Watts & Strogatz, 1998).
Using a similar approach, =α E Eglob

real
glob
rand and =β E Eloc

real
loc
rand.

2.4.4.2. Nodal parameters. The following 4 parameters were used to
depict the local network topological organization (Rubinov & Sporns,
2010; Tian et al., 2011): 1) nodal global efficiency (Eglob

w ) and 2) nodal
local efficiency (Eloc

w ), which together represent the efficiency of
parallel information transfer of a node (i.e., nodal efficiency (Eglob

w );
3) nodal strength (Si

w), the sum of the edge weights of all connections of
a node, represents the extent to which a node is related to other nodes
in the network; and 4) nodal betweenness (Bi

w), the number of shortest
paths from one node to another node that pass through a third node,
represents the information flow of the third node with other nodes in
the whole network.

In this study, all elements of the connectivity matrix were thre-
sholded using a previously measured sparsity, which was computed by
dividing the maximum possible number of edges in a network by the
total number of edges. However, different sparsity values lead to var-
iant effects on the topological organization of networks
(Rubinov & Sporns, 2010; Tian et al., 2011), and there is no definitive
approach to select a single threshold. Thus, we empirically thresholded
each correlation matrix repeatedly over a wide range of 0.04 ≤ spar-
sity ≤ 0.5 with an interval of 0.02 to obtain sparse and weighted net-
works. In this study, we not only computed each parameter that cor-
responded to each sparsity threshold but also calculated the integrated
network parameters over the whole range of sparsity values (Tian et al.,
2011) to investigate group differences in network attributes. Mathe-
matically, the integrated global parameters for a network are defined
as:

=

=

X X kΔS ΔSΣ ( )glob
k

int
2

25

(1)

where ΔS represents the sparsity interval of 0.02, and X kΔS( ) indicates
one of the global network parameters (Cw, Lw, Eglob, Eglob

w , Eloc
w , or λ)Bi

w

at a sparsity of kΔS. Similarly, the integrated nodal parameters may be
defined as:

=

=

Y Y i kΔS ΔSΣ ( , )nod
k

int
2

25

(2)

where Y i kΔS( , ) represents any nodal parameter (Eglob
w , Eloc

w , Si
w, or Bi

w)
at a sparsity of kΔS, and ΔS represents the sparsity interval of 0.02.

2.5. Statistical analysis

2.5.1. Between-group comparisons
Nonparametric permutation tests (Bullmore & Sporns, 1999) were

used to identify between-group differences in the global parameters
(weighted clustering coefficient, weighted characteristic path length,
global efficiency, local efficiency, normalized weighted clustering
coefficient, normalized weighted characteristic path length, normalized
global efficiency, and normalized local efficiency). For each parameter,
10,000 permutations were computed, resulting in an empirical dis-
tribution of the between-group differences. The 95% distribution was
used as the critical value for a two-tailed test of the null hypothesis with
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5% type I error (false positive). Of note, for the permutation tests, the
effects of several confounding factors, including age and gender, were
regressed out as covariates (Zuo et al., 2012).

2.5.2. Correlations between nodal parameters and behavioral data
This study implemented multiple linear regression analyses to de-

termine whether the regional properties of networks could explain in-
dividual differences in creative performance within each group. The
dependent variable was TTCT performance, and the independent vari-
ables included the integrated network nodal parameters such as the
integrated nodal local efficiency, as well as age and gender. To reduce
the data dimensions, only nodes that were significantly correlated with
creative performance were used in the regressions. Notably, to ensure
the same rigidity level between the network parameters and the be-
havioral data, we normalized both the network parameter data and the
behavioral data to investigate their relationships (Zhang, Wang, Liu,
Chen, & Liu, 2015). This regression analysis was repeated for each in-
tegrated nodal parameter (e.g., integrated nodal global efficiency, in-
tegrated nodal local efficiency, integrated nodal strength, and in-
tegrated nodal betweenness) to investigate whether the parameter
could explain creative performance within each group. In addition,
using the same approach, we added intelligent scores as an additional
covariate and further explored correlations between regional properties
of networks and creative data.

3. Results

3.1. Behavioral data

Mean performance of each group on tests of creativity (TTCT) and
intelligence (RSPM) are described in Table 1 and Fig. 1. We compared
the groups on these measures using two-tailed independent sample t-
tests. As expected, TTCT scores were significantly higher in the HG
relative to the LG (p< 0.01), while there was no significant difference
in intelligence scores between the two groups. Thus, HG and LG were
well matched in terms of intellectual abilities as well as age and gender.

3.2. Network parameters

3.2.1. Global parameters
The functional brain networks of both groups met the criteria for

classification as small-world networks (i.e., γ > > 1 and λ ≈ 1 or
σ = γ/λ > 1) (Fig. 2a). However, there were significant differences
between the network metrics of the two groups. Compared with the LG,
there was a significant decrease in the integrated normalized weighted
characteristic path length and a significant increase in the integrated
normalized global efficiency in the HG (Fig. 2a and b, respectively).
Furthermore, at specific sparsity levels, there were significantly de-
creased normalized weighted characteristic path length and sig-
nificantly increased normalized global efficiency in the HG compared
with the LG (λ: 0.14 ≤ sparsity ≤ 0.3; α: 0.12 ≤ sparsity ≤ 0.3)
(Fig. 2a and b, respectively). Despite the existence of group differences
in these global network parameters, we did not identify significant

brain-behavior correlations between the global network parameters and
TTCT scores.

3.3. Relationships between regional network parameters and TTCT
performance

Using the MLRA method, we further assessed the associations be-
tween regional network parameters and creative performance. The in-
tegrated regional (nodal) parameters (i.e., integrated nodal global ef-
ficiency, integrated nodal local efficiency, and integrated nodal
betweenness) significantly explained individual differences in TTCT
scores (Table 2). In particular, integrated nodal betweenness and in-
tegrated nodal global efficiency predominately and consistently ex-
plained the variation in TTCT performance in both groups. With respect
to integrated nodal betweenness, regions associated with TTCT scores
in the HG included right fusiform gyrus (FFG), left precuneus (PCUN),
left temporal cortex (TC), left thalamus (THA), and right posterior oc-
cipital cortex (POC). In contrast, for the LG, associated regions included
right ventral medial prefrontal cortex (vmPFC), right ventral inferior
prefrontal cortex (vIPFC), right precuneus (PCUN), right posterior
cingulate cortex (PCC), left parietal cortex (PC), left precentral gyrus
(PreCG), right dorsal frontal cortex (dFC), and right inferior parietal
lobule (IPL) (Table 3).

Specifically, left TC, right FFG, left PCUN, right POC, and left THA
exhibited important effects in explaining creative performance in the
HG, predicting 43%, 34%, 31%, 31% and 29%, respectively, of the
variation in creativity (Fig. 3).

In the LG, left PreCG, right dFC1, right vmPFC, and right vIPFC
predicted 61%, 52%, 48%, and 47%, respectively, of the variation in
TTCT scores (Fig. 4). Of note, these findings were not identified for
other nodal parameters.

In addition, regional network global efficiency also explained inter-
individual variation of TTCT performance. In the HG, the integrated
nodal global efficiency of left TC, left inferior cerebellum (ICER), and
right anterior insula (AINS) (Table 4) predicted 50%, 39%, and 27% of
the variance in TTCT scores, respectively. Using the same metric, in the
LG, left occipital cortex (OC1), left POC1, and right POC1 (Table 4)
predicted 57%, 49%, and 49% of the variation in TTCT scores, re-
spectively.

We also explored associations between nodal parameters and crea-
tive data using MLRA with intelligence (RSPM scores) included as a
covariate. Adding this covariate did not change the overall pattern of
results. Specifically, we still found that integrated nodal betweenness
and integrated nodal global efficiency were the metrics that pre-
dominately and consistently explained individual differences in TTCT
scores in both groups (Table 5).

In the HG, integrated nodal betweenness was again associated with
left TC, left PCUN, right POC and left THA, predicting 43%, 31%, 31%,
and 29% of the variation in creativity, respectively (Table 6; Fig. 5). In
contrast, in the LG, associated regions included left PreCG, right dFC,
right vmPFC, right vIPFC, right PCUN, right PCC, and right IPL. In
particular, left PreCG, right dFC1, right vmPFC, and right vIPFC pre-
dicted 61%, 52%, 48%, and 47% of the variation in the LG’s TTCT
scores, respectively (Table 6; Fig. 6).

Additionally, integrated nodal global efficiency also still explained
inter-individual variation in TTCT performance. For the HG, left TC, left
ICER, and right AINS predicted 50%, 39%, and 27%, respectively, of the
variance in TTCT scores (Table 7). For the LG, left OC1, left POC1, and
right POC1 (Table 7) predicted 57%, 49%, and 49% of the variation in
TTCT scores, respectively.

Of note, both integrated nodal betweenness and integrated nodal
global efficiency patterns, which significantly explained TTCT perfor-
mance, failed to explain intelligence (as measured by the RSPM scores)
using the same approach (the same consequence in the multiple linear
regression analysis adding intelligence as a covariate).

Table 1
Demographic information of participants in this study.

HG (M ± SD) LG (M ± SD) t-value (df)

Age 18.86 ± 1.08 19.13 ± 0.99 −0.87 (42)
RSPM scores 54.95 ± 4.85 55.68 ± 3.15 −0.59 (42)
TTCT scores 65.54 ± 4.09 38.20 ± 5.85 17.96** (42)

Note: HG, high-creativity group; LG, low-creativity group; RSPM, Raven’s Standard
Progressive Matrices; TTCT, Torrance Tests of Creative Thinking; M, mean; SD, standard
deviation; df, degrees of freedom; Two-tailed independent sample t-tests were used to
investigate the between-group differences.

** p < 0.01.
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4. Discussion

Resting-state fMRI has been widely used for exploring many in-
trinsic attributes of the human brain, usually with the aim of detecting
biomarkers for neurological disorders. For instance, a previous study
(Zhang et al., 2015) found that nodal efficiency of resting-state brain
networks could effectively discriminate Parkinson’s disease patients
from healthy controls using multivariate pattern analysis, and could
also explain the variability of tremor based on a multiple linear re-
gression model. Another study has suggested that the resting-state
clustering coefficient may be useful as an imaging-based biomarker to
distinguish Alzheimer’s disease from healthy aging (Supekar, Menon,
Rubin, Musen, & Greicius, 2008). In addition, network topology may be
useful in understanding cognitive function in healthy individuals. Many
studies have shown that resting-state global efficiency is significantly
related to cognitive abilities such as intelligence (van den Heuvel et al.,
2009) and working memory (Stevens, Tappon, Garg, & Fair, 2012;
Langer et al., 2013), while resting-state nodal efficiency is highly linked
with attentional capability (Markett et al., 2014) and perception of
biological motion (Wang et al., 2016). Therefore, the topology of
resting-state brain networks is not only useful in predicting neurolo-
gical disorders, but also various aspects of cognitive performance in
healthy individuals.

Here, the present study further investigated the topological orga-
nization of intrinsic brain networks in participants with differing levels
of creativity, as measured by the TTCT. The main findings are sum-
marized as follows: (1) While an optimized network organization was
identified for both the HG and LG, information transformation effi-
ciency was better in the HG compared with the LG. (2) The regional
functional integration properties of brain networks (i.e., integrated
nodal betweenness and integrated nodal global efficiency) were able to
explain inter-individual variation in creative performance in the two
groups. (3) The associations of network regional properties with crea-
tive performance involved different brain regions in each of the two
groups, suggesting these associations were creativity-level dependent.

4.1. Individual differences in resting network attributes

This study characterized and compared the topological properties of
intrinsic brain networks between groups of individuals with high and
low levels of creativity (HG and LG, respectively). We demonstrated
that the two groups both have small-world attributes that reflect a re-
latively larger clustering coefficient and approximately equal char-
acteristic path lengths compared with the corresponding random net-
works (Fig. 2a). The small-world attribute embodies an optimal balance
of functional integration and segregation, and maximizes the efficiency
of transferring information at a relatively low cost (Sporns &Honey,
2006). Thus, the small-world characterization of networks in the pre-
sent study may reflect the ability of the human brain to support efficient
information transfer and distributed information processing. In parti-
cular, we found that the topological properties of brain networks were
highly associated with creative ability. Further supporting this notion
was evidence that integrated normalized weighted characteristic path
length was significantly decreased in the HG compared with the LG
(Fig. 2a). It should be noted that the paths reflect linkages of distinct
nodes and thus represent potential routes of information flow between
pairs of brain regions (Rubinov & Sporns, 2010). Indeed, the average
shortest path length between all pairs of nodes within the network −
referred to as the characteristic path length of the network
(Watts & Strogatz, 1998) − is the most commonly used measure of
functional integration. Thus, the decreased integrated normalized
weighted characteristic path length in the HG indicates that the high-
creativity subjects likely have shorter links within local nodes for a
more efficient spread from the centrality to other nodes, supporting the
flexible generation of original ideas. Correspondingly, we also found
that integrated normalized global efficiency was significantly increased
in the HG compared with the LG (Fig. 2b). Notably, the global efficiency
is computed as the inverse of the characteristic path length and de-
scribes an integrated function that indicates the efficiency of the entire
network in transforming information among nodes via multiple edges
(Latora &Marchiori, 2001). Thus, the finding that integration in brain
networks was increased in the HG also suggests that in highly creative
individuals, brain networks may propagate information flow with a

Fig. 1. Creativity and intelligence data in high-creativity and low-creativity groups. (1) Scatterplot for describing creative and intelligent data we acquired, the blue rhombus stands for
creative data while the red rhombus stands for intelligent data. (2) Histograms for showing the group-difference in respect of creativity and intelligence using two-tailed independent
sample t-tests. HG, high-creativity group; LG, low-creativity group; RSPM, Raven’s Standard Progressive Matrices; TTCT, Torrance Tests of Creative Thinking; * p < 0.0001. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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high efficiency. This finding is, to a certain extent, consistent with a
previous report that more creative participants exhibited substantially
increased global efficiency leading to a highly efficient information
transfer across a network of brain regions linked to divergent thinking
(Beaty et al., 2015).

Many previous studies have documented the relationship between
network topology and aspects of cognitive ability, such as intelligence
(van den Heuvel et al., 2009) and working memory (Stevens et al.,
2012; Langer et al., 2013). These studies have provided evidence that
the effect of network topology on increasing preparatory resources may
facilitate brain responses to perceptual cues (Hashmi et al., 2014). Our
findings of increased normalized global efficiency and relatively low
normalized weighted characteristic path length in the HG’s resting-state

networks may be consistent with information theory; thus, increased
efficiency is associated with a lower cost of information transfer and the
capacity to transfer information locally in a network
(Bullmore & Sporns, 2009). Together, the topological properties of in-
trinsic brain networks of creative individuals may reflect a neural
substrate that promotes creative performance.

4.2. Associations between regional network attributes and creative
performance

To further identify the network properties that were highly related
to creative performance, we used an MLRA approach to determine the
specific regional network properties that significantly explained inter-

Fig. 2. Global parameters of whole brain functional networks in the HG and LG. (a) Small-world property. (b) Global parameters that changed with sparsity and group differences in
integrated global topological parameters. Cw, weighted clustering coefficient; Lw, weighted characteristic path length; γ, normalized weighted clustering coefficient; λ, normalized
weighted characteristic path length; Eglob, global efficiency; Eloc, local efficiency; α, normalized global efficiency; β, normalized local efficiency; ‘int’ indicates the abbreviation for
“integrated”.

B. Jiao et al. Biological Psychology 129 (2017) 165–177

170



individual variation in creative performance. First, the current findings
indicated that integrated nodal betweenness had the highest predictive
power of the variation in TTCT scores in both groups (Table 2). Nodal
centrality is a universal concept in social network analysis, which has
been widely applied to fMRI data analysis (Sporns, Honey, & Kötter,
2007; Buckner et al., 2009). The concept of integrated nodal be-
tweenness reflects the degree to which a node resides on the shortest
path between pairs of nodes within a network, and is used as a valid
marker to identify key nodes and edges with respect to information flow
in a network (Girvan &Newman, 2002). Based on the present findings,
we speculate that how well a given node or hub is globally embedded in
a network may serve as a biomarker of creative ability. Further analysis
indicated that the main regions in the HG were predominately located
in left PCUN, right FFG, and left TC (Table 3; Fig. 3). These findings are
consistent with previous reports that the PCUN is related to self-gen-
erated thought (Christoff, Gordon, Smallwood, Smith, & Schooler,
2009) and also potentially contributes to creative thought (Takeuchi
et al., 2011; Li, Yang, Zhang, Li, & Qiu, 2016; Zhu et al., 2017). In ad-
dition, Aziz-Zadeh and her colleagues suggested that visual creativity
may involve stronger motor imagery (Aziz-Zadeh, Liew, & Dandekar,
2013), and given that motor imagery is associated with increased
resting-state connectivity between the FFG and PCUN (Zhang et al.,
2014), our finding that nodal betweenness of both FFG and PCUN are
predictive of TTCT is consistent with this notion. Therefore, our finding

regarding the involvement of the right FFG and the left PCUN may
suggest an important role of visual imagery in divergent thinking. This
study also demonstrated that nodal betweenness of left TC was pre-
dictive of creative performance. The role of the TC is consistent with
previous evidence of strong associations with dimensions of creativity,
particularly originality (Chen et al., 2015).

Notably, the regions evident in the HG were mainly located in the
DMN (the left PCUN and the right FFG) and the SMN (the left TC); these
regions within DMN and SMN exhibited relatively increased levels of
prediction for creative performance compared with other regions
within other networks. Correspondingly, the regions with increased
predictive power in the LG also belonged to DMN (the right vmPFC,
right vIPFC, right PCUN, and right PCC) and SMN (the left PreCG)
(Table 3; Fig. 4). Many previous studies have indicated that the DMN
plays an important role in spontaneous thought, such as mind wan-
dering, autobiographical retrieval, and episodic future thinking
(Buckner, Andrews-Hanna, & Schacter, 2008; Andrews-Hanna, 2012).
According to the two-stage process model of creativity, creative thought
includes two important processes, namely idea generation and idea
evaluation (Finke, Ward, & Smith, 1996). For the idea generation stage
of creativity, the DMN may play a key role for widely distributed at-
tention resources (Jung, Mead, Carrasco, & Flores, 2013) and retrieval
of potentially useful information (Andrews-Hanna et al., 2014). Our
findings are consistent with the notion that the generation of ideas is a
critical aspect of the inter-individual variation in creative performance.
Moreover, the involvement of the SMN overlaps to a certain extent with
previous studies demonstrating that the SMN is involved in complex
creative generation such as music improvisation (Bengtsson,
Csíkszentmihályi, & Ullén, 2007; Limb & Braun, 2008).

In addition, we further demonstrated that the integrated nodal
global efficiency had significant explanatory power in both the HG and
LG. Correspondingly, a previous study demonstrated a strong associa-
tion between the global efficiency of functional brain networks and
intelligence (van den Heuvel et al., 2009). Moreover, the present study
illustrates that integrated nodal global efficiency is also a predictor of
creative ability. This result may be similar to the finding that the per-
sonality trait of openness, which is positively linked to creative per-
formance, is related to the global efficiency of the DMN (Beaty,
Kaufman et al., 2016). It should be noted that integrated nodal global
efficiency instead of integrated nodal local efficiency predicted creative
performance, which suggest that the functional integration of the whole
brain rather than local regions likely has a more important role in

Table 2
Performance of the MLRA in the prediction of the TTCT in two groups.

Groups Predictors Regress

Adjusted R2 p-value

HG
Eglob

int 0.599 0.001

Eloc
int 0.399 0.030

Bi
int 0.683 0.001

LG
Eglob

int 0.769 0.006

Eloc
int 0.518 0.040

Bi
int 0.763 0.002

Note: Eglob
w , nodal global efficiency; Eloc

w , nodal local efficiency; Bi
w, nodal betweenness.

‘int’ represents the abbreviation for “integrated”.

Table 3
Brain locations involved in the MLRA for nodal Bi

int in the two groups.

Parameters Region Hemisphere Module MNI-coordinates

x (mm) y (mm) z (mm)

Bi
inta

FFG R default 28 −37 −15
PCUN L default −6 −56 29
TC L sensorimotor −41 −37 16
THA L cingulo-opercular −12 −12 6
POC R occipital 33 −81 −2

Bi
intb

vmPFC R default 6 64 3
vIPFC R default 46 39 −15
PCUN R default 9 −43 25
PCC R default 10 −55 17
PC L sensorimotor −47 −18 50
PreCG L sensorimotor −54 −22 22
dFC1 R fronto-parietal 40 17 40
dFC2 R fronto-parietal 44 8 34
IPL R fronto-parietal 54 −44 43

Note: a HG; b LG; FFG, fusiform gyrus; PCUN, precuneus; TC, temporal cortex; THA, thalamus; POC, posterior occipital cortex; vmPFC, ventral medial prefrontal cortex; vIPFC, ventral
inferior prefrontal cortex; PCC, posterior cingulate cortex; PC, parietal cortex; PreCG, precentral gyrus; dFC1 and dFC2, dorsal frontal cortex; IPL, inferior parietal lobule; R, right
hemisphere; L, left hemisphere.
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explaining individual differences in creativity. Crucially, we de-
termined that the related regions were predominantly located in the
DMN (i.e., left PCUN and right FFG) and SMN (i.e., left TC). The cor-
respondence of networks identified in the prediction of creativity from
the analyses of two metrics (i.e., integrated nodal betweenness and
integrated nodal global efficiency) also suggests that the functional
integration of intrinsic brain activity in these two networks underlies
creative ability.

4.3. Creativity-level dependent brain-behavior correlations

The present study investigated the associations between network
regional properties and creative performance in the HG and LG. We
found that these network attributes significantly explained individual
differences in creativity in both high and low creativity groups; how-
ever, the regions involved were different across the two creativity-level
groupings. Specifically, we noted that the integrated nodal betweenness
of right POC accounted for creative performance in the HG. Previous
studies have revealed that occipital regions are involved in the

Fig. 3. Surface visualization of brain regions that
exhibited significant predictions of TTCT perfor-
mance in the HG. The model related to each region
was significant (p < 0.05); the radius of the node
corresponds to the coefficient size.

Fig. 4. Surface visualization of brain regions that
exhibited significant predictions of TTCT perfor-
mance in the LG. The model related to each region
was significant (p < 0.05) with the exception of the
left PC; the radius of the node corresponds to the
coefficient size.
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generation of creative ideas correlated with use of visual imagery
(Howard-Jones, Blakemore, Samuel, Summers, & Claxton, 2005;
Chrysikou & Thompson-Schill, 2011), in line with our findings.

Moreover, the occipital regions have been found to activated in concert
with sensorimotor regions during mental imagery processes (Mellet,
Petit, Mazoyer, Denis, & Tzourio, 1998; Mazard, Laou, Joliot, &Mellet,
2005). The present findings regarding the SMN (left TC) and the occi-
pital network (right POC) suggests that the production of imaginary
information may facilitate original ideas and products. Furthermore, we
also found that the betweenness of the left THA explained TTCT per-
formance. Given that the thalamus is a key region in the attentional
network (Callejas, Lupiáñez, & Tudela, 2004; Fan, McCandliss, Fossella,
Flombaum, & Posner, 2005), this finding is consistent with previous
proposals of the importance of control of attention on creativity during
both resting state and tasks (Beaty et al., 2014, 2015). We speculate
that the left thalamus may act as a regulator between the DMN and
SMN, with highly creative individuals having a more effective resting-
attentional system, enabling them to focus on more original and in-
novative information from both internal and external sources. Im-
portantly, we did not find significant differences in network parameters
between the two groups in our secondary analysis that is only restricted
to DMN from the Dosenbach et al. anatomical atlas. Thus, the results
also support in part the notion that creative ability may be impacted by
coupling patterns of regions in multiple networks other than the DMN.

Table 4
Brain locations involved in MLRA for regional Eglob

int in the two groups.

Parameters Region Hemisphere Module MNI-coordinates

x (mm) y (mm) z (mm)

Eglob
int a

TC L sensorimotor −53 −37 13
AINS R cingulo-opercular 38 21 −1
ICER L cerebellum −34 −67 −29

Eglob
int b

OC1 L default −2 −75 32
FFG R default 28 −37 −15
PCC L cingulo-opercular −4 −31 −4
TC R cingulo-opercular 43 −43 8
POC1 L occipital −29 −88 8
POC1 R occipital 29 −81 14
POC2 L occipital −37 −83 −2
POC2 R occipital 27 −91 2
OC R occipital 9 −76 14
OC2 L occipital −34 −60 −5
MCER R cerebellum 14 −75 −21

Note: a HG; b LG; TC, temporal cortex; AINS, anterior insula; ICER, inferior cerebellum; OC, OC1 and OC2, occipital cortex; FFG, fusiform; PCC, posterior cingulate cortex; POC1 and POC2,
posterior occipital cortex; MCER, median cerebellum; R, right hemisphere; L, left hemisphere.

Table 5
Performance of the MLRA in predicting TTCT including IQ as a covariate in two groups.

Groups Predictors Regress

Adjusted R2 p-value

HG
Eglob

int 0.599 0.001

Eloc
int 0.399 0.030

Bi
int 0.683 0.001

LG
Eglob

int 0.769 0.006

Eloc
int 0.518 0.040

Bi
int 0.763 0.002

Note: Eglob
w , nodal global efficiency; Eloc

w , nodal local efficiency; Bi
w, nodal betweenness.

‘int’ represents the abbreviation for “integrated”.

Table 6
Brain locations involved into MLRA for nodal Bi

int in the two groups adding IQ as a covariate.

Parameters Region Hemisphere Module MNI-coordinates

x (mm) y (mm) z (mm)

Bi
inta

PCUN L default −6 −56 29
TC L sensorimotor −41 −37 16
THA L cingulo-opercular −12 −12 6
POC R occipital 33 −81 −2

Bi
intb

vmPFC R default 6 64 3
vIPFC R default 46 39 −15
PCUN R default 9 −43 25
PCC R default 10 −55 17
PreCG L sensorimotor −54 −22 22
dFC1 R fronto-parietal 40 17 40
dFC2 R fronto-parietal 44 8 34
IPL R fronto-parietal 54 −44 43

Note: a HG; b LG; PCUN, precuneus; TC, temporal cortex; THA, thalamus; POC, posterior occipital cortex; vmPFC, ventral medial prefrontal cortex; vIPFC, ventral inferior prefrontal
cortex; PCC, posterior cingulate cortex; PreCG, precentral gyrus; dFC1 and dFC2, dorsal frontal cortex; IPL, inferior parietal lobule; R, right hemisphere; L, left hemisphere.
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In contrast, in the LG, regions in the SMN and fronto-parietal network
(FPN) tend to jointly account for TTCT performance, which may lead to
lower creativity as a result of more stringent top-down control. A recent
study (Liu et al., 2015) supports this hypothesis. Specifically, compared
with experts, the poems of novices which exhibited less creativity were
associated with substantially stronger connectivity between prefrontal
regions and motor regions. Another speculation is that the brain exists
as an internal hierarchical model (Friston, 2009) in which each system
attempts to suppress the free-energy of its subordinates through a
process of optimizing predictions to reduce prediction-errors. Thus, we
propose that when in the resting state, the DMN of highly creative in-
dividuals may play a greater role in preparing resources, and may

reduce top-down control to save energy for the search for more original
ideas. This free-energy principle may explain why the local network
attributes of the HG were unexpectedly less correlated with creative
performance compared with the LG.

Regarding the integrated nodal global efficiency, we determined
that the right AINS is associated with higher levels of creativity. Many
studies have indicated that the AINS is a hub within the salience net-
work (SN), which prepares attention for an external stimulus
(Bressler &Menon, 2010) and integrates multiple sensory states, in-
cluding gustatory, olfactory, auditory, and somatosensory (Ibañez,
Gleichgerrcht, &Manes, 2010). Importantly, the AINS may exert an
important role as a dynamic switch between the DMN and the ECN

Fig. 5. Surface visualization of brain regions that
significantly predicted TTCT performance in the HG
after adding IQ as a covariate. The model related to
each region was significant (p < 0.05); the radius of
the node corresponds to the coefficient size.

Fig. 6. Surface visualization of brain regions that
significantly predicted TTCT performance in the LG
after adding IQ as a covariate. The model related to
each region was significant (p < 0.05); the radius of
the node corresponds to the coefficient size.
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(Andrews-Hanna et al., 2014; Beaty et al., 2015). Similarly, in the
present study, the right AINS may reflect the flexible switching between
the resting state and divergent tasks.

The current findings also revealed that the network properties of
specific regions play unique role in explaining individual differences in
creativity. Notably, we found that the integrated nodal global efficiency
of occipital network nodes (the bilateral POC1) exhibited a strong re-
lationship with creative performance in the LG, and a similar trend was
also identified in the integrated nodal betweenness of the HG. These
findings may indicate that the intrinsic activity of the occipital network
influences creative ability, which is consistent with a previous study
(Howard-Jones et al., 2005). Nevertheless, these occipital regions tend
to play distinct roles in different levels of creativity. Specifically, in the
HG, the integrated nodal betweenness was important, emphasizing the
information flow of a given node and global connections in a network.
In contrast, the integrated nodal global efficiency, which represents the
nodal transfer efficiency within the global network, plays a part in the
LG. Thus, the HG appear to rely more on occipital intercommunication
with other nodes across the whole brain. Given the importance of oc-
cipital regions in visual creativity (Chrysikou & Thompson-Schill,
2011), we speculate that increased information flow through this region
may be beneficial for fluently generating more creative ideas overall on
the TTCT.

Of note, many studies have shown that intelligence and creativity
are correlated constructs (Kim, 2005; Batey & Furnham, 2006; Benedek
et al., 2014). In the current study, intelligence scores were matched
across both groups, thus our findings changed little after adding in-
telligence as a covariate. Most importantly, we also found that the re-
lated nodes that strongly predicted the TTCT scores did not correlate
significantly with intelligence scores in either group. This pattern of
findings leads us to infer that the role of these regions in explaining
TTCT is specific to creative thinking. According to previous evidence,
intelligence primarily focuses on the identification of the correct solu-
tion, which may be correlated with working memory (Conway,
Kane, & Engle, 2003; Ackerman, Beier, & Boyle, 2005; Shelton, Elliott,
Hill, Calamia, & Gouvier, 2009), whereas creative thought primarily
focuses on the generation of novel approaches. Thus, in the absence of
external tasks, the node centrality of the DMN may play a substantially
more important role in creativity compared with intelligence, which
facilitates an increased generation of spontaneous thought (Buckner
et al., 2008; Andrews-Hanna, 2012).

4.4. Limitations

There are several issues that should be addressed in future research.
First, creativity is a high-level, complex, cognitive ability that includes
multiple processes such as self-generated thought (Beaty, Benedek
et al., 2016), executive control (Silvia & Beaty, 2012), top-down control
of attention (Nusbaum& Silvia, 2011), and working memory capacity
(Lee & Therriault, 2013). Moreover, it is influenced by many psycho-
logical factors, such as mood, personality (Ding et al., 2015), and in-
telligence (Benedek et al., 2014). The present study mainly focused on
divergent thinking and investigated the neural factors that may explain
individual difference of divergent thinking performance. Divergent
thinking is a key element of creative thought (Kim, 2008); however, it
remains necessary to further investigate the neural basis of other as-
pects of the creativity in future studies. Of note, other factors, such as
age, genetics, and learning, all of which impact, to some extent, on
brain topological attributes (Uhlhaas, Roux, Rodriguez, Rotarska-
Jagiela, & Singer, 2010; Fornito et al., 2011; Cao et al., 2014), will also
be interesting issues to explore in future research. Second, the present
study combined a graph-based network analysis with MLRA approach
to demonstrate the importance of regional functional integration
properties of resting-state networks in explaining creativity; however,
the structural substrates of creativity, such as the white matter con-
nections and morphological structure, remain unclear and should be
considered in future studies. Moreover, we concentrated on using the
multiple linear regression approach to detect differential contributions
of specific regional attributes of particular network nodes to creativity
within each group. Future work could expand on this by exploring
between-group differences of regional attributes using other ap-
proaches, such as multiple variation analysis. Third, the current find-
ings were obtained during resting state, and creative performance was
measured using the TTCT. Additional creativity-related cognitive tasks
could be employed in which real-time response metrics, such as re-
sponse time and the accuracy ratio, are recorded; moreover, predictive
power of neural response to creative tasks should also be explored.
Combining these approaches with the current study will enable a fuller
analysis of the inter-individual variation of creativity and neural re-
sponses, and the origin of these individual differences in creativity
should ultimately be determined.

5. Conclusions

The present study investigated associations between the topological

Table 7
Brain locations involved into MLRA for regional Eglob

int in the two groups adding IQ as a covariate.

Parameters Region Hemisphere Module MNI-coordinates

x (mm) y (mm) z (mm)

Eglob
int a

TC L sensorimotor −53 −37 13
AINS R cingulo-opercular 38 21 −1
ICER L cerebellum −34 −67 −29

Eglob
int b

OC1 L default −2 −75 32
PCC L cingulo-opercular −4 −31 −4
TC R cingulo-opercular 43 −43 8
POC1 L occipital −29 −88 8
POC1 R occipital 29 −81 14
POC2 L occipital −37 −83 −2
POC2 R occipital 27 −91 2
OC R occipital 9 −76 14
OC2 L occipital −34 −60 −5
MCER R cerebellum 14 −75 −21

Note: a HG; b LG; TC, temporal cortex; AINS, anterior insula; ICER, inferior cerebellum; OC, OC1 and OC2, occipital cortex; PCC, posterior cingulate cortex; POC1 and POC2, posterior
occipital cortex; MCER, median cerebellum. R, the right hemisphere; L, the left hemisphere.
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organization of resting-state brain networks and creative performance.
We demonstrated that an optimized organization of intrinsic brain
network sustains creative thought. Of the brain network properties re-
lated to creativity, the functional integration properties performed best
in explaining inter-individual differences in creative performance.
Regions of the DMN and SMN were consistently and tightly related to
creative performance and the difference in resource control and allo-
cation may be an important aspect of individual differences in crea-
tivity. This study has important implications for understanding the
neural substrates that underlie creative performance.
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