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Abstract

The present study aimed to explore the association between resting-state functional connectivity and creativity abil-
ity. Toward this end, the figural Torrance Tests of Creative Thinking (TTCT) scores were collected from 180 par-
ticipants. Based on the figural TTCT measures, we collected resting-state functional magnetic resonance imaging
data for participants with two different levels of creativity ability (a high-creativity group [HG, n = 22] and a
low-creativity group [LG, n = 20]). For the aspect of group difference, this study combined voxel-wise functional
connectivity strength (FCS) and seed-based functional connectivity to identify brain regions with group-change
functional connectivity. Furthermore, the connectome properties of the identified regions and their associations
with creativity were investigated using the permutation test, discriminative analysis, and brain–behavior correlation
analysis. The results indicated that there were 4 regions with group differences in FCS, and these regions were linked
to 30 other regions, demonstrating different functional connectivity between the groups. Together, these regions
form a creativity-related network, and we observed higher network efficiency in the HG compared with the LG.
The regions involved in the creativity network were widely distributed across the modality-specific/supramodality
cerebral cortex, subcortex, and cerebellum. Notably, properties of regions in the supramodality networks (i.e., the
default mode network and attention network) carried creativity-level discriminative information and were signifi-
cantly correlated with the creativity performance. Together, these findings demonstrate a link between intrinsic
brain connectivity and creative ability, which should provide new insights into the neural basis of creativity.

Keywords: connectome; creativity; functional connectivity strength; resting-state fMRI; seed-based functional
connectivity

Introduction

Creativity can be viewed as the ability to originate
novel ideas that are useful or meaningful, which is a

characteristic human ability with considerable individual di-
vergence (De et al., 2016; Thys et al., 2014). Neuroimaging
studies have shown that creative performances involve mul-
tiple cognitive processes (e.g., generation, revision, and eval-
uation) (Jung et al., 2013; Liu et al., 2015; Zhu et al., 2017),
and they also require information communication among
brain regions separated in space (Chávez-Eakle et al., 2007;
Chen et al., 2014; Thys et al., 2014). With respect to creative
task-induced neural responses, although many studies have
identified specific brain regions that are important for crea-

tivity, a growing body of evidence indicates that it is the co-
ordination between multiple brain regions, rather than action
of individual regions, that is most important for the creative
process (Aziz-Zadeh et al., 2013; Dietrich and Kanso, 2010;
Wei et al., 2014; Zhao et al., 2014).

The spontaneous activity of the human brain is self-organized
within a network and can be revealed by resting-state functional
magnetic resonance imaging (rs-fMRI) (Beckmann et al.,
2005; Biswal et al., 1995; Mitra et al., 2014). The concept
of graph theory is well suited for characterizing and depict-
ing the topological organization of brain networks (Bullmore
and Sporns, 2009; Lee et al., 2016; Rubinov and Sporns,
2010). Graph-based network analyses have demonstrated
the existence of an optimized topology in brain networks
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with efficient information transmission and exchange (Fal-
lani et al., 2014; Zuo et al., 2012). An optimized brain net-
work is the neural basis of cognitive behavior (Achard and
Bullmore, 2007), and network analysis provides a new ave-
nue for elaborating the neural basis underlying cognition.

Many studies have shown that the majority of neural re-
sponses to cognition tasks can be shaped by intrinsic brain ac-
tivity (Aziz-Zadeh et al., 2013; Dietrich and Kanso, 2010;
Wei et al., 2014; Zhao et al., 2014), or in other words, intrin-
sic brain activity could be the neural network preparing re-
sources for cognition performance. Therefore, the intrinsic
activity modality could be closely associated with behavior
performance (Bolay et al., 2002; Fox and Raichle, 2007;
Zou et al., 2013). Correspondingly, researchers have shown
that the interindividual creativity divergence is highly related
to resting-state functional connectivity (De et al., 2016; Kou-
nios et al., 2008; Takeuchi et al., 2012). It also appears that
the regions involved in creativity-related functional connec-
tivity are widely distributed across the default mode network
(DMN; e.g., the posterior cingulated), the medial prefrontal
cortex, and dorsolateral superior frontal gyrus (DLSFG)
(Takeuchi et al., 2012, 2017; Wei et al., 2014). The middle
temporal gyrus (MTG) may be central to the generation of
novel ideas which are key to creativity (Ellamil et al.,
2012). In addition, the inferior temporal gyrus (ITG) and cer-
ebellum were also found to be highly associated with crea-
tivity behavior performance (Chávez-Eakle et al., 2007;
Kounios et al., 2008; Mayseless et al., 2014). These observa-
tions imply that widespread brain regions and their intercon-
nectivity constitute a brain network that sustains creativity
performance. Therefore, a network perspective should pro-
vide a fuller view of the neural substrates underlying creativ-
ity behavior performance.

In this study, we used a data-driven approach to ex-
plore the resting-state brain network relevant to creativity
behavior. Toward this end, participants were recruited for
high-creativity group (HG, n = 22) and low-creativity group
(LG, n = 20) based on the figural Torrance Tests of Creative
Thinking (TTCT). Then, we collected rs-fMRI data for each
participant in the two groups. Based on these data, the voxel-
wise functional connectivity strength (FCS) of the whole
brain was calculated for each participant, and the brain re-
gions with different FCS between the two groups were iden-
tified. The above-identified brain regions were then further
analyzed as regions of interest (ROIs), and an ROI-based func-
tional connectivity analysis method was used to trace the re-
gions that originated the FCS changes in the two groups.
Finally, the ROIs and traced regions were analyzed together,
and the interconnections were measured using graph-based
network analysis.

Materials and Methods

Participants

For the present study, a total of 180 right-handed healthy
undergraduates (90 males and 90 females, age range from 18
to 22 years) were recruited from the campus of South China
Normal University (SCNU, Guangdong, China). The creativ-
ity score of each participant was measured using the figural
TTCT questionnaire. The TTCT, which includes verbal, fig-
ural, and auditory tests, was designed to be a measure diver-
gent thinking, a central aspect of creativity (Kleibeuker et al.,

2017; Takeuchi et al., 2017; Wei et al., 2014). Visual creativ-
ity is of importance that it reflects the character of divergent
thinking and the figure creativity test is found to be effective
to measure the visual creativity. Thus, in this study, we used
the figural TTCT to identify the participants with high visual
creativity performance, which has been widely used in many
studies (Chávez-Eakle et al., 2007; Huang et al., 2012; Kim
et al., 2006; Pidgeon et al., 2016). The figural TTCT com-
prises three tasks. One of the tasks required participants to
imagine a picture or a story based on an egg-shaped line fig-
ure that was pictured in a paper. One of the tasks required
participants to draw some interesting things based on 10 un-
finished pictures. The last task required participants to add
some lines to draw some different objects in 30 pairs of par-
allel lines. For each task, scoring comprised four compo-
nents: fluency (the number of relevant responses, which is
related to the ability to consider different possibilities), flex-
ibility (the ability to shift between two conceptual fields),
originality (the degree of unusual responses, which is associ-
ated with breaking away from the common and obvious
thinking habits), and elaboration (the amount of details on
each response). The TTCT has suggested high predictive val-
idity (r > 0.57) and high reliability (r > 0.90) (Torrance, 1988,
1990, 1993). The current study used the total creativity
scores (sum of fluency, flexibility, originality, and elabora-
tion scores). In addition, we also examined the intellectual
ability of each participant using the Combined Raven’s
Test (CRT), which is a widely recognized intelligence test
with high reliability and validity (Tang et al., 2012). The pre-
vious findings suggested that gender might influence creativ-
ity ability (Abraham et al., 2014; Lin et al., 2012; Ryman
et al., 2014). Based on the figural TTCT scores, we selected
22 participants from the top 12% of figural TTCT scores (11
males, 18.86 – 1.08 years) as the HG and 22 participants (11
males, 19.13 – 0.99 years) from the bottom 12% of figural
TTCT scores as the LG. The previous studies have proposed
that gender might influence creativity ability (Abraham
et al., 2014; Lin et al., 2012). Thus, we selected the same num-
ber of females and males to minimize the influence of gender
differences. To maintain the homogeneity of each group, we
excluded two subjects whose TTCT scores more than 50 in
LG (9 males, 19.10 – 1.02 years). Then, we collected rs-
fMRI scans for all selected participants in the two groups.
This study was approved by the Institutional Review Board
of SCNU. Each participant provided informed written consent
for the present study. Table 1 lists the detailed demographic
data of the two groups.

Table 1. The Demographic Information of All

Selected Participants in This Study

HG (n = 22) LG (n = 20) t

Age (years) 18.86 – 1.08 19.10 – 1.02 �0.73a

Gender (M/F) 11/11 9/11 0.095b

Figural TTCT 65.54 – 4.09 36.57 – 2.52 27.90a,**
CRT 54.95 – 4.85 55.90 – 3.13 �0.76a

aThe t values were obtained using a two-sample t-test.
bThe t value was obtained using a chi-square test.
**p < 0.01.
CRT, Combined Raven’s Test; figural TTCT, the figural Torrance

Tests of Creative Thinking; HG, high-creativity group; LG, low-
creativity group.
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Image acquisition

All participants were scanned using a 3T Siemens Trio
Tim MR scanner at the Brain Imaging Center of SCNU.
The rs-fMRI data were collected using a GE-echo planar im-
aging (EPI) sequence: 32 axial slices; repetition time (TR) =
2000 msec; echo time (TE) = 30 msec; slice thickness = 3.5 mm;
no gap; flip angle (FA) = 90�; matrix = 64 · 64; field of view
(FOV) = 192 · 192 mm. The participants were instructed to
lay quietly with their eyes closed during the scans. After
scanning, a total of 240 volumes were obtained for each
participant. In addition, individual high-resolution three-
dimensional structural images were also acquired using a
T1-weighted MP-RAGE sequence: TR = 1900 msec; TE =
2.52 msec; slice thickness = 1 mm; no gap; FA = 9�; matrix =
256 · 256; FOV = 256 · 256 mm.

Data preprocessing

The rs-fMRI data were preprocessed using DPARSF (Yan
et al., 2009) based on SPM8 (www.fil.ion.ucl.ac.uk/spm/
software/spm8). The functional preprocessing primarily con-
sisted of the following steps. (1) We discarded the first 10
volumes to account for signal equilibrium. (2) The time de-
lay of the intravolume in slices, as well as head movements
resulting in geometrical displacements, was corrected for (none
of the participants was excluded based on the criterion of a
displacement of >1 mm or an angular rotation of >1� in any
direction). (3) The image data were normalized to the Montreal
Neurological Institute (MNI) space at 3-mm isotropic resolu-
tion by using EPI template. (4) The data were band-pass filtered
(0.01–0.1 Hz) to decrease the effects of high-frequency physi-
ological noise and low-frequency drift, and the linear trend
was also removed. (5) Using regression, we removed nuisance
covariates, including head motion via the Friston 24-parameter
model (Friston et al., 1996; Yan et al., 2013), white matter, and
cerebrospinal fluid signals. Also, in the following calculation
step, we limited the evaluation of the function connectome
within the gray matter by using the gray matter probability map.

Voxel-wise FCS

In this study, the degree centrality was considered to be an
important property in whole-brain FCS (Buckner et al., 2009;
Zuo et al., 2012). In calculations, the time series of each voxel
of the preprocessed fMRI data were extracted for each partici-
pant using a GM probability map (threshold = 0.2) to constrain
all the analyses within the GM. We obtained Pearson’s correla-
tions between the time series of all pairs of voxels in the entire
brain, generating a whole-brain connectivity matrix for each
participant. The individual correlation matrices were further
translated to a z-score matrix using the Fisher’s r-to-z ap-
proach. In the z-value matrix, the FCS of each voxel was cal-
culated by computing the sum of the connections for a given
voxel with all other voxels. In this study, functional connectiv-
ity was restricted to positive scores due to the ambiguous inter-
pretation of negative correlations (Wang et al., 2014). Finally,
an FCS of each participant was normalized by translating to z-
score values within each participant of the two groups.

Seed-based functional connectivity

Using the FCS analysis, we were able to identify the brain
sites that showed differences in degree centrality between the

two groups based on a two-sample t-test (for details, see the
Statistical Analyses section). The degree centrality is an
important indicator of the FCS. In this study, we wished to
obtain greater insight into the regions showing different
FCS. Therefore, the regions that showed differences in de-
gree centrality between two groups were further analyzed
as ROIs, and we chose seed regions (defined as a sphere cen-
tered at the ROI coordinate with a 6-mm radius) to calculate
the voxel-wise functional connectivity of the whole brain
using the preprocessed data. The resulting FCS data were
further subjected to Fisher’s r-to-z transformation to improve
normality. The above manipulations were performed using
REST (www.nitrc.org/projects/rest). In this way, we could
statistically identify all regions that exhibited differential
functional connectivity within the regions displaying dif-
ferent FCS between the two groups.

Network analysis

The functional connections of the regions with different
FCS and the subsequently traced regions were further ana-
lyzed due to their high likelihood of being involved in crea-
tivity performance. To reveal the organization among these
regions, we constructed a connectivity matrix individually
and then analyzed them using graph-based analysis. Network
analysis was implemented in MATLAB using GRETNA
(Wang et al., 2015). Briefly, a spherical ROI was generated
for each of these regions, with the centroid located at the cor-
responding peak voxel (radius = 6 mm). We found out in total
of 36 regions by combining the FCS method and the ROI-
based functional connectivity approach, which also have
been used in a Parkinson’s disease study and the study sug-
gested a meaningful result (Zhang et al., 2015a). In order
to overcome the issue of the overlap among these regions,
we excluded potentially overlapping ROIs based on the
Euclidean distance if the Euclidean distance <6 mm (Zhang
et al., 2015a). Based on the above calculation, we finally
excluded one brain region. These remaining regions were
treated as the nodes of the brain network, and we further
extracted the mean time series of each node for each partic-
ipant and calculated the Pearson’s correlation between any
two of them as edges. In this way, we obtained an n · n cor-
relation matrix (n is the number of remaining regions) for
each participant. To exclude possible effects due to spurious
correlations on network topology, we chose a sparsity thresh-
old (i.e., the ratio of the number of existing edges divided by
the maximum possible number of edges in a network) to con-
vert the individual correlation matrices, such that only the
highest correlations remained. The sparsity approach nor-
malized all resultant networks to have the same number of
nodes and edges and also minimized the effects of discre-
pancies in the overall correlation strength between groups.
We empirically thresholded each correlation matrix multiple
times over a wide range (0.1059 < sparsity <0.5859; interval =
0.02) to obtain sparse and weighted networks.

We calculated multiple network measures, including the
clustering coefficient (Cp), shortest path length (Lp), local ef-
ficiency (Eloc), and global efficiency (Eglob) (Achard and
Bullmore, 2007; He et al., 2009a). The area under the
curve (AUC) method was used for each network metric to
provide a summarized scalar independent of single threshold
selection (Watts and Strogatz, 1998; Zhang et al., 2011).
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Statistical analyses

A two-sample t-test was performed on the individual FCS
data from the rs-fMRI data and the FCS data for each ROI to
identify brain regions that exhibited differences between HG
and LG. Statistical analyses were corrected using the Monte
Carlo simulations approach implemented in REST. Before
calculations, the FCS data were z-score transformed to im-
prove normalization and spatially smoothed (FWHM = 8 mm).

Nonparametric permutation tests (10,000 permutations)
were used to identify between-group differences in network pa-
rameters (Cp, Lp, Eloc, and Eglob). Age, gender, and CRT scores
were treated as unconcerned covariates for all comparisons.

Afterward, a discriminant analysis (www.mathworks.com/
matlabcentral/fileexchange/19950) was used to examine
whether the parameters (FCS, Cp, Eloc, and Eglob) of the
functional network carried discrimination information
between the two groups and distinguished HG from LG.

Finally, we explored a partial correlation (Pearson correla-
tion) between the figural TTCT scores and network/regional
efficiency (Cp, Lp, Eloc, and Eglob) in each group, in which
age, gender, and CRT scores were treated as unconcerned
covariates. When we explored the correlation between the
figural TTCT scores and regional (nodal) efficiency, we used
the 1/n (n = 34) criterion to perform multiple comparison cor-
rection (Bassett et al., 2009; Lynall et al., 2010; Zhang et al.,
2015b). Then we computed the effect size (Cohen d) and
statistical power which was determined by Cohen d (Cohen,
1977, 2013). The Cohen d of Cp, Lp, Eloc, and Eglob were
0.8, 1.1, 0.9, and 0.8, respectively.

Results

Voxel-wise FCS

We explored the voxel-wise FCS of the whole brain in HG
and LG, and a similar pattern was observed for the group-
mean FCS between HG (Fig. 1A) and LG (Fig. 1B). The
group-mean FCS was distributed across the entire brain, and
the regions with the strongest FCS were predominately distrib-
uted across the bilateral precuneus, bilateral cingulated cortex,
left cuneus gyrus, bilateral superior occipital gyrus, bilateral
calcarine fissure, bilateral surrounding cortex, bilateral lingual
gyrus, and bilateral cerebellum. A similar FCS distribution
pattern was observed in both the HG and LG.

However, further analysis revealed that four FCS regions
showed differences between the two groups (Fig. 1C and
Table 2). Among these regions, the FCS of the right cerebel-
lum was significantly increased in HG compared with LG.

We also found significant decreases in FCS in the right rectus
gyrus, the right calcarine fissure and the left cerebellum in
HG compared with LG.

Figure 2 shows the between-group differences in seed-
based functional connectivity in HG and LG. The details
of the traced regions with respect to functional connectivity
are listed in Table 2. The ROIs and the traced regions could
together represent a creativity-related network (Fig. 3). The
involved regions of the creativity-related network were widely
distributed across the cerebral cortex, subcortex regions, and
cerebellum. Perhaps unsurprisingly, most of the relevant re-
gions were located at the cerebral cortex, including the
modality-specific networks (e.g., the visual network [VIN],
the auditory network [AUN], and the sensorimotor network
[SEN]) and supramodality networks (e.g., the DMN and
the attention network [ATN]). Notably, these brain networks
(Table 2) were identified based on the findings of resting-
state functional connectivity studies (He et al., 2009b;
Heine et al., 2012; Zhang et al., 2010).

Network parameters

Results revealed that the HG had shorter Lp ( p = 0.0003)
and higher Eglob ( p = 0.0006) values than the LG (Fig. 4A).
Furthermore, we found that there was negative correlation
between Lp and the figural TTCT scores (r =�0.5082,
p = 0.0010) (Fig. 4B). Similarly, we found a positive correla-
tion between Eglob and the figural TTCT scores (r = 0.5132,
p = 0.0008) (Fig. 4C).

Regional network parameters

We found that the properties of the regions related to the
supramodality network obtained discriminative power in dis-
tinguishing HG and LG. These results showed these param-
eters had good distinction power. First, we found that the
FCS between the right MTG (DMN) and the right middle
frontal gyrus (MFG) (ATN) exhibited the highest discrimina-
tive power (AUC = 0.8309, SE = 0.06276, 95% CI area =
0.70788 – 0.9539) (Fig. 5A). Second, we found that the
right DLSFG (DMN) exhibited discriminative power and
that the Cp (AUC = 0.77572, SE = 0.07210, 95% CI area =
0.63441 – 0.91704) and Eloc (AUC = 0.8091, SE = 0.06720,
95% CI area = 0.67742 – 0.94082) values from this region
could be used to effectively classify the two groups (Fig. 5B–
C). Moreover, the Eglob value of the left DLSFG (DMN) also
exhibited discriminative power (AUC = 0.8956, SE = 0.05042,
95% CI area = 0.79679 – 0.99442; Fig. 5D).

FIG. 1. The results of the within/between-group analyses of FCS. (A) Group-mean FCS pattern of the HG. (B) Group-mean
FCS pattern of the LG. (C) Between-group differences in FCS ( p < 0.05, corrected). FCS, functional connectivity strength;
HG, high-creativity group; LG, low-creativity group. Color images available online at www.liebertpub.com/brain
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In addition, there were significant correlations for Cp, Eloc,
and Eglob with the figural TTCT in many regions in the two
groups (Table 2 and Fig. 6). The results showed a significant
negative correlation between regional efficiency (Cp) and the
figural TTCT scores in the right postcentral gyrus (PCG)
(SEN) in HG. Similarly, in the same region there was a sig-
nificant negative correlation between regional efficiency
(Eloc) and the figural TTCT scores in HG. Moreover, the rela-
tionship between global efficiency (Elglob) and the figural
TTCT scores in HG showed a significant positive correlation
in the left ITG (ATN).

Discussion

This study used a data-driven approach to explore the
functional brain connections underlying creativity ability in

terms of group differences and brain–behavior correlations.
The main results can be summarized as follows: (1) there
were many functionally connected regions that showed
group differences in the modality-specific/supramodality ce-
rebral cortex, subcortex, and cerebellum, and together these
regions form a creativity network in which information trans-
lation efficiency is higher in HG than in LG; and (2) the prop-
erties of the supramodality regions within the creativity
network can be used to discriminate between HG and LG
and are significantly correlated with creative performance.

We first used degree centrality to compute the differences
between two groups. Degree centrality is the number of
edges connecting to a node (Zuo et al., 2012). The degree
centrality is an important indicator of the functional con-
nectivity strength. It represents the most local and directly
quantifiable centrality measure. The degree centrality was

Table 2. The Remaining Regions (n = 34) Showing Significant Difference of Functional Connectivity

Strength with the Selected Regions of Interest Between Groups ( p < 0.05, Corrected)

No. Brain regions
Brain

network
Volume

of clusters

MNI coordinate
t value

(HG�LG)x y z

1a Rectus_R DMN 397 6 39 �24 �3.8373
2a Calcarine_R VIN 345 12 �96 6 �3.0809
3a Cerebellum_8_R — 1272 27 �66 �57 3.2299
4a Cerebellum_4_5_L — 491 �6 �39 �6 �3.7354
5b Frontal_Mid_Orb_R ATN 234 42 57 �12 3.889
6b Frontal_Mid_Orb_L ATN 184 �42 51 �12 3.0373
7b Frontal_Inf_Oper_R ATN 80 48 15 9 3.6805
8b Cingulum_Mid_L SCN 55 �6 �9 45 2.6294
9c Frontal_Sup_R DMN 75 18 51 6 3.8964

10d Vermis_6 — 1259 3 �63 �12 4.5587
11d Temporal_Inf_L ATN 83 �57 �18 �30 3.9307
12d Temporal_Inf_R DMN 103 54 �33 �18 3.4794
13d Frontal_Mid_R ATN 3713 30 60 0 4.3749
14d Fusiform_R VIN 63 27 �60 �15 �2.5972
15d Lingual_L VIN 516 �12 �87 �3 �3.3802
16d Frontal_Mid_Orb_L ATN 69 �39 51 �6 3.3888
17d Occipital_Inf_R ATN 90 39 �84 �3 �2.7909
18d Frontal_Sup_L DMN 80 �24 6- 12 3.5975
19d Calcarine_R VIN 88 3 �57 9 3.0675
20d Frontal_Sup_L DMN 566 �18 42 33 4.2634
21d Cuneus_L VIN 66 0 �72 27 2.8461
22d Parietal_Inf_R ATN 495 42 �60 57 3.6952
23e Temporal_Pole_Sup_L AUN 134 �21 6 �33 �3.7725
24e Temporal_Inf_L ATN 87 �42 �48 �18 �3.6469
25e Rectus_R DMN 59 3 21 �18 �3.28
26e Temporal_Mid_R DMN 100 63 �3 �18 �3.3931
27e Temporal_Inf_L ATN 246 �60 �60 �6 �3.2754
28e Occipital_Inf_R VIN 86 36 �63 �9 �2.9043
29e Temporal_Mid_L DMN 56 �51 �15 �15 �3.3505
30e Temporal_Mid_R DMN 155 57 �66 12 �3.858
31e Frontal_Sup_Medial_L DMN 61 �9 63 12 �3.2528
32e Postcentral_R SEN 319 60 �12 48 �4.6328
33e Paracentral_Lobule_R SEN 89 3 �30 60 �2.8977
34e Postcentral_L SEN 61 �36 �36 69 �2.9581

aThe ROIs of identifying the brain sites that showed difference of FCS between the two groups.
bRegions from the right inferior cerebellum, center = [27� 66� 57].
cRegions from the right gyrus rectus, center = [6 39� 24].
dRegions from the right calcarine fissure, center = [12� 96 6].
eRegions from the left superior cerebellum, center = [�6� 39� 6].
ATN, the attention network; AUN, the auditory network; DMN, the default mode network; FCS, functional connectivity strength; L, left

hemisphere; MNI, Montreal Neurological Institute; R, right hemisphere; ROIs, regions of interest; SCN, the subcortical network; SEN, the
sensorimotor network; VIN, the visual network.
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FIG. 2. Between-group differences in
seed-based functional connectivity ( p < 0.05,
corrected). Color images available online at
www.liebertpub.com/brain

FIG. 3. A brain surface representation of
the 34 ROIs and their connections within the
creativity-related network. ROIs, regions of
interest. Color images available online at
www.liebertpub.com/brain
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different between two groups, it means FCS has differences
between high-creativity and low-creativity group. On this
aspect, we think the ROIs which derived from different anal-
ysis (degree centrality and FCS analysis) played similar roles
in the network in the current study.

Many previous studies have shown that the patterns of in-
trinsic brain activity are trait related (Heine et al., 2012;
Mitra et al., 2014; Rubinov and Sporns, 2010) and that

resting-state functional connectivity is highly associated
with creativity ability (Chen et al., 2014; Takeuchi et al.,
2012). To extend these previous findings using aspects of in-
dividual divergence, we explored voxel-wise FCS across the
whole brain between groups of participants with high- and
low-level creativity in a resting state, and we found changes
in the FCS of the DMN (e.g., the left DLSFG and right rectus
gyrus), attention-related regions (e.g., the right MFG), and
cerebellum between the two groups. Previous studies focusing
on single brain regions identified the location and function
of specific regions in creativity performance (Aziz-Zadeh
et al., 2009; Fink et al., 2009; Li et al., 2014), demonstrating
the importance of the right MFG in semantic divergence
and creative story generation (Howard-Jones et al., 2005)
and insight solutions (Aziz-Zadeh et al., 2009). In addition
to these above regions, activation of the right insula was ob-
served during creative assessment tasks (Mayseless et al.,
2014) and the insight and search solution (Aziz-Zadeh et al.,
2009). Notably, creativity is a complex cognitive process that
includes multiple mental processes, including hypothesis gen-
eration, search solution, and insight (Aziz-Zadeh et al., 2009;
Dietrich and Kanso, 2010; Howard-Jones et al., 2005; Liu et
al., 2015; Zhu et al., 2017). Thus, the results of this study
with respect to spontaneous brain activity are consistent with
the crucial roles of the aforementioned regions (e.g., the left
DLSFG, right MFG, and the left ITG). Furthermore, the agree-
ment between our findings and those of previous studies dem-
onstrates the sensitivity and rationale of using voxel-wise FCS
to explore the effects of individual divergences in intrinsic
brain activity characteristics on creativity levels.

Many studies have shown that the intrinsic activity of
brain regions creates a complex network of interactions
(Bolay et al., 2002; Fox and Raichle, 2007). Consistently,
it has been shown that creativity is not due to cognitive activ-
ities in isolated brain region, but rather is the result of inter-
actions and interconnections between multiple brain regions
(de Souza et al., 2010; Dietrich and Kanso, 2010; Fink et al.,
2009) and multiple brain networks (Beaty et al., 2016,
2017). In this study, using a seed-based functional connectiv-
ity approach, we explored the regions of origin of the ob-
served changes in FCS, and we found a number of regions
that were widely distributed across the supramodality and
modality-specific networks. According to the hypothesis of
embodiment cognition, human cognition is not beyond per-
ception, but is rather tightly related to the specific modal-
ity (Overwalle et al., 2015). In the present study, we also
found that many modality-specific regions (e.g., SEN, VIN,
and AUN), in addition to the supramodality regions (e.g.,
the DMN and ATN), together comprise an interacting func-
tional brain network. Indeed, with respect to brain spontane-
ous activity, the intrinsic activity of the modality-specific
regions (e.g., the primary visual cortex) was observed to be
highly coordinated with that of the supramodality regions,
perhaps creating a pattern for mental imagery (Wang et al.,
2008), which was shown to be correlated with the creativity
performance (LeBoutillier and Marks, 2003). The most im-
portant advance of the current work is that we identified a
functional connectivity network for creativity by searching
the brain connectome at the voxel level, suggesting the exis-
tence of a network associated with creativity.

It should be noted that graph-based network analysis provi-
des one approach for depicting the topological organization

FIG. 4. (A) Comparisons of global parameters between
HG and LG. Cp, Lp, Eloc, and Eglob indicated the characteris-
tic clustering coefficient, shortest path length, local effi-
ciency, and global efficiency, respectively. Permutation
tests were used for statistical comparisons of group differ-
ences for the global parameters; **p < 0.01. (B) The partial
correlations between Lp and the figural TTCT scores; (C)
the partial correlations between Eglob and the figural TTCT
scores. TTCT, Torrance Tests of Creative Thinking. Color
images available online at www.liebertpub.com/brain
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of complex interactions between multiple regions within a net-
work. With respect to aspects of information translation effi-
ciency, the topological organization of brain networks was
found to be different for certain mental traits (e.g., disease
[Kullmann et al., 2014], intelligence [Sawaya et al., 2015], per-
sonality [Li et al., 2014], and mental state [Geerligs et al.,
2015]). In this study, we explored network organization using
two groups with different creativity levels to analyze not only
the shortest path length but also the network efficiency on the
group-difference aspect. Similar to our previous study of
dynamic functional connectivity in human creative brain (Li
et al., 2017), the results from both aspects showed that the
brain networks of individuals with high creativity levels
exhibited better optimized network organization compared
with those from low creativity individuals. These findings pro-
vide evidence for the existence of an optimized, creativity-
related functional brain network, and they also demonstrate
the rationale of the data-driven approach used in the present

study. In addition, the properties of the creativity-related net-
work, such as the hub regions, should be further explored in
future works.

In addition to our findings on the creativity-related brain
network, the present study further explored the relationship
between regional network properties and creative ability.
For the group-difference aspect, we found that discriminative
analysis could effectively classify the two groups using the
network properties of the DMN (e.g., the right MTG and
left DLSFG) and ATN (e.g., the right MFG) as features.
These findings suggest that the most discriminative features
between the two groups were attributes of the supramodality
regions linked to the creativity-related network, although this
network was widely distributed and included both the
modality-specific and supramodality regions. We also ex-
plored correlations between the regional properties of the
creativity-related network and creativity performance, and
we found that that the information translation efficiency of

FIG. 5. ROC curve for distinguishing HG and LG using network properties. ROC, receiver operating characteristic. Color
images available online at www.liebertpub.com/brain
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the ATN (e.g., the left ITG) within the creativity-related
network was significantly correlated with the creativity
performance. At the same time, the regional translation effi-
ciency of SEN (e.g., the right PCG) within the creativity-
related network was significantly negative correlated with
creative performance. These observations indicate that the

variance of network properties in the supramodality regions
can explain individual divergence in creative performance.
With regard to intersubject variability, DMN demonstrates
the highest level of functional variability, with the ATN a
close second; in addition, the activity of both regions is sig-
nificantly more variable than for the SEN and VIN (Mueller

FIG. 6. Significant correlations between Cp, Eloc, and Eglob and the figural TTCT scores for the HG. (A) The Cp values of
the HG and the figural TTCT scores. (B) The Eloc values of HG and the figural TTCT scores. (C) The Eglob values of HG and
the figural TTCT scores. Color images available online at www.liebertpub.com/brain
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et al., 2013). In other words, individual differences are pri-
marily reflected in the properties of high-level brain regions.
Notably, for the group-difference and brain–behavior corre-
lation aspects, we consistently found that the network prop-
erties of the supramodality regions within our identified
creativity-related network were highly associated with crea-
tivity ability. In fact, many previous studies have shown the
importance of intrinsic functional connectivity of the DMN
in creativity (Beaty et al., 2014, 2015). Consistently, we ob-
served a tight association between the supramodality regions
(e.g., the DMN and ATN) and creativity performance. To
our best knowledge, attention is one of the core elements of
creativity. HG showed better connectivity between the
DMN and ATN, suggesting that HG had greater top-down
control over the imaginative processes stemming from the
DMN (Beaty et al., 2015) and that HG can better control
their attention being creative. Consequently, our findings
provide further evidence for the role of attention in the cre-
ative process.

Limitations and Directions

There are several limitations that need to be addressed in
future studies. First, creativity levels were measured based
on divergent thinking using TTCT scores. Although diver-
gent thinking is the key component of creativity ability and
several previous studies have used the figural TTCT scores
as a measure of creativity (Dietrich and Kanso, 2010; Tor-
rance, 1998), creativity is a complex cognitive process with
many other aspects besides divergent thinking. Thus, other di-
mensions of creativity should be considered in future works.
Second, with respect to individual divergence, the present
study showed significant differences in network connections
between HG and LG. However, it should be noted that these
findings were derived from the healthy undergraduate stu-
dents, and it should be determined whether these conclusions
extend to other populations. Third, by using resting-state
data, we identified a creativity-related network whose prop-
erties were related to creativity levels. However, it remains
unclear how this creativity network would perform during
creativity tasks, which should be explored in future studies.
Finally, the main results were derived from a small sample
size dataset, which should be further validated using a gen-
eralized population in future works.

Conclusions

The present study used a data-driven approach to identify
creativity-related intrinsic brain connections, including re-
gions of the modality-specific/supramodality cerebral cortex,
subcortex, and cerebellum. The topological organization of
the functional connectome was dependent on creativity level.
The properties of the supramodality regions (i.e., the DMN
and ATN) exhibited discriminative power in classifying
the creativity of participants and also displayed strong corre-
lations with creative performance. These findings have im-
portant implications for understanding the neural substrates
underlying creativity.
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